-----------------------------------------------
--- Document for MATLAB interface of LIBSVM ---
-----------------------------------------------
Table of Contents
=================
- Introduction
- Installation
- Usage
- Returned Model Structure
- Examples
- Other Utilities
- Additional Information
Introduction
============
This tool provides a simple interface to LIBSVM, a library for support vector
machines (http://www.csie.ntu.edu.tw/~cjlin/libsvm). It is very easy to use as
the usage and the way of specifying parameters are the same as that of LIBSVM.
Installation
============
On Unix systems, we recommend using GNU g++ (version < 3.4) as your
compiler and type 'make' to build 'svmtrain.mexglx' and 'svmpredict.mexglx'.
Note that we assume your MATLAB is installed in '/usr/local/matlab',
if not, please change MATLABDIR in Makefile.
Example:
linux> make
On Windows systems, pre-built 'svmtrain.mexw32' and 'svmpredict.mexw32' are
included in this package, so no need to conduct installation. If you
have modified the sources and would like to re-build the package, type
'mex -setup' in MATLAB to choose a compiler for mex first. Then type
'make' to start the installation.
Starting from MATLAB 7.1 (R14SP3), the default MEX file extension is changed
from .dll to .mexw32 or .mexw64 (depends on 32-bit or 64-bit Windows). If your
MATLAB is older than 7.1, you have to build these files yourself.
Example:
matlab> mex -setup
(ps: MATLAB will show the following messages to setup default compiler.)
Please choose your compiler for building external interface (MEX) files:
Would you like mex to locate installed compilers [y]/n? y
Select a compiler:
[1] Microsoft Visual C/C++ version 7.1 in C:\Program Files\Microsoft Visual Studio
[0] None
Compiler: 1
Please verify your choices:
Compiler: Microsoft Visual C/C++ 7.1
Location: C:\Program Files\Microsoft Visual Studio
Are these correct?([y]/n): y
matlab> make
For list of supported/compatible compilers for MATLAB, please check the
following page:
http://www.mathworks.com/support/tech-notes/1600/1601.html
Usage
=====
matlab> model = svmtrain(training_label_vector, training_instance_matrix, [,'libsvm_options']);
-training_label_vector:
An m by 1 vector of training labels.
-training_instance_matrix:
An m by n matrix of m training instances with n features.
It can be dense or sparse.
-libsvm_options:
A string of training options in the same format as that of LIBSVM.
matlab> [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model [,'libsvm_options']);
-testing_label_vector:
An m by 1 vector of prediction labels. If labels of test
data are unknown, simply use any random values.
-testing_instance_matrix:
An m by n matrix of m testing instances with n features.
It can be dense or sparse.
-model:
The output of svmtrain.
-libsvm_options:
A string of testing options in the same format as that of LIBSVM.
Returned Model Structure
========================
The 'svmtrain' function returns a model which can be used for future
prediction. It is a structure and is organized as [Parameters, nr_class,
totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]:
-Parameters: parameters
-nr_class: number of classes; = 2 for regression/one-class svm
-totalSV: total #SV
-rho: -b of the decision function(s) wx+b
-Label: label of each class; empty for regression/one-class SVM
-ProbA: pairwise probability information; empty if -b 0 or in one-class SVM
-ProbB: pairwise probability information; empty if -b 0 or in one-class SVM
-nSV: number of SVs for each class; empty for regression/one-class SVM
-sv_coef: coefficients for SVs in decision functions
-SVs: support vectors
If you do not use the option '-b 1', ProbA and ProbB are empty
matrices. If the '-v' option is specified, cross validation is
conducted and the returned model is just a scalar: cross-validation
accuracy for classification and mean-squared error for regression.
More details about this model can be found in LIBSVM FAQ
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVM
implementation document
(http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf).
Result of Prediction
====================
The function 'svmpredict' has three outputs. The first one,
predictd_label, is a vector of predicted labels. The second output,
accuracy, is a vector including accuracy (for classification), mean
squared error, and squared correlation coefficient (for regression).
The third is a matrix containing decision values or probability
estimates (if '-b 1' is specified). If k is the number of classes, for decision values,
each row includes results of predicting k(k-1/2) binary-class SVMs. For probabilities,
each row contains k values indicating the probability that the testing instance is in
each class. Note that the order of classes here is the same as 'Label'
field in the model structure.
Examples
========
Train and test on the provided data heart_scale:
matlab> load heart_scale.mat
matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2');
matlab> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, heart_scale_inst, model); % test the training data
For probability estimates, you need '-b 1' for training and testing:
matlab> load heart_scale.mat
matlab> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 2 -b 1');
matlab> load heart_scale.mat
matlab> [predict_label, accuracy, prob_estimates] = svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1');
To use precomputed kernel, you must include sample serial number as
the first column of the training and testing data (assume your kernel
matrix is K, # of instances is n):
matlab> K1 = [(1:n)', K]; % include sample serial number as first column
matlab> model = svmtrain(label_vector, K1, '-t 4');
matlab> [predict_label, accuracy, dec_values] = svmpredict(label_vector, K1, model); % test the training data
Take linear kernel for example, the following precomputed kernel example
gives exactly same training error as LIBSVM built-in linear kernel
matlab> load heart_scale.mat
matlab> n = size(heart_scale_inst,1);
matlab> K = heart_scale_inst*heart_scale_inst';
matlab> K1 = [(1:n)', K];
matlab> model = svmtrain(heart_scale_label, K1, '-t 4');
matlab> [predict_label, accuracy, dec_values] = svmpredict(heart_scale_label, K1, model);
Note that for testing, you can put anything in the first column. For
details of precomputed kernels, please read the section ``Precomputed
Kernels'' in the README of the LIBSVM package.
Other Utilities
===============
A matlab function read_sparse reads files in LIBSVM format:
[label_vector, instance_matrix] = read_sparse('data.txt');
Two outputs are labels and instances, which can then be used as inputs
of svmtrain or svmpredict. This code is derived from svm-train.c in
LIBSVM by Rong-En Fan from National Taiwan University.
Additional Information
======================
This interface was initially written by Jun-Cheng Chen, Kuan-Jen Peng,
Chih-Yuan Yang and Chih-Huai Cheng from Department of Computer
Science, National Taiwan University. The current version was prepared
by Rong-En Fan and Ting-Fan Wu. If you find this tool useful, please
cite LIBSVM as follows
Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm