function model=classRF_train(X,Y,ntree,mtry, extra_options)
DEFAULTS_ON =0;
%DEBUG_ON=0;
TRUE=1;
FALSE=0;
orig_labels = sort(unique(Y));
Y_new = Y;
new_labels = 1:length(orig_labels);
for i=1:length(orig_labels)
Y_new(find(Y==orig_labels(i)))=Inf;
Y_new(isinf(Y_new))=new_labels(i);
end
Y = Y_new;
if exist('extra_options','var')
if isfield(extra_options,'DEBUG_ON'); DEBUG_ON = extra_options.DEBUG_ON; end
if isfield(extra_options,'replace'); replace = extra_options.replace; end
if isfield(extra_options,'classwt'); classwt = extra_options.classwt; end
if isfield(extra_options,'cutoff'); cutoff = extra_options.cutoff; end
if isfield(extra_options,'strata'); strata = extra_options.strata; end
if isfield(extra_options,'sampsize'); sampsize = extra_options.sampsize; end
if isfield(extra_options,'nodesize'); nodesize = extra_options.nodesize; end
if isfield(extra_options,'importance'); importance = extra_options.importance; end
if isfield(extra_options,'localImp'); localImp = extra_options.localImp; end
if isfield(extra_options,'nPerm'); nPerm = extra_options.nPerm; end
if isfield(extra_options,'proximity'); proximity = extra_options.proximity; end
if isfield(extra_options,'oob_prox'); oob_prox = extra_options.oob_prox; end
%if isfield(extra_options,'norm_votes'); norm_votes = extra_options.norm_votes; end
if isfield(extra_options,'do_trace'); do_trace = extra_options.do_trace; end
%if isfield(extra_options,'corr_bias'); corr_bias = extra_options.corr_bias; end
if isfield(extra_options,'keep_inbag'); keep_inbag = extra_options.keep_inbag; end
end
keep_forest=1; %always save the trees :)
%set defaults if not already set
if ~exist('DEBUG_ON','var') DEBUG_ON=FALSE; end
if ~exist('replace','var'); replace = TRUE; end
%if ~exist('classwt','var'); classwt = []; end %will handle these three later
%if ~exist('cutoff','var'); cutoff = 1; end
%if ~exist('strata','var'); strata = 1; end
if ~exist('sampsize','var');
if (replace)
sampsize = size(X,1);
else
sampsize = ceil(0.632*size(X,1));
end;
end
if ~exist('nodesize','var'); nodesize = 1; end %classification=1, regression=5
if ~exist('importance','var'); importance = FALSE; end
if ~exist('localImp','var'); localImp = FALSE; end
if ~exist('nPerm','var'); nPerm = 1; end
%if ~exist('proximity','var'); proximity = 1; end %will handle these two later
%if ~exist('oob_prox','var'); oob_prox = 1; end
%if ~exist('norm_votes','var'); norm_votes = TRUE; end
if ~exist('do_trace','var'); do_trace = FALSE; end
%if ~exist('corr_bias','var'); corr_bias = FALSE; end
if ~exist('keep_inbag','var'); keep_inbag = FALSE; end
if ~exist('ntree','var') | ntree<=0
ntree=500;
DEFAULTS_ON=1;
end
if ~exist('mtry','var') | mtry<=0 | mtry>size(X,2)
mtry =floor(sqrt(size(X,2)));
end
addclass =isempty(Y);
if (~addclass && length(unique(Y))<2)
error('need atleast two classes for classification');
end
[N D] = size(X);
if N==0; error(' data (X) has 0 rows');end
if (mtry <1 || mtry > D)
DEFAULTS_ON=1;
end
mtry = max(1,min(D,round(mtry)));
if DEFAULTS_ON
fprintf('\tSetting to defaults %d trees and mtry=%d\n',ntree,mtry);
end
if ~isempty(Y)
if length(Y)~=N,
error('Y size is not the same as X size');
end
addclass = FALSE;
else
if ~addclass,
addclass=TRUE;
end
error('have to fill stuff here')
end
if ~isempty(find(isnan(X))); error('NaNs in X'); end
if ~isempty(find(isnan(Y))); error('NaNs in Y'); end
%now handle categories. Problem is that categories in R are more
%enhanced. In this i ask the user to specify the column/features to
%consider as categories, 1 if all the values are real values else
%specify the number of categories here
if exist ('extra_options','var') && isfield(extra_options,'categories')
ncat = extra_options.categories;
else
ncat = ones(1,D);
end
maxcat = max(ncat);
if maxcat>32
error('Can not handle categorical predictors with more than 32 categories');
end
%classRF - line 88 in randomForest.default.R
nclass = length(unique(Y));
if ~exist('cutoff','var')
cutoff = ones(1,nclass)* (1/nclass);
else
if sum(cutoff)>1 || sum(cutoff)<0 || length(find(cutoff<=0))>0 || length(cutoff)~=nclass
error('Incorrect cutoff specified');
end
end
if ~exist('classwt','var')
classwt = ones(1,nclass);
ipi=0;
else
if length(classwt)~=nclass
error('Length of classwt not equal to the number of classes')
end
if ~isempty(find(classwt<=0))
error('classwt must be positive');
end
ipi=1;
end
if ~exist('proximity','var')
proximity = addclass;
oob_prox = proximity;
end
if ~exist('oob_prox','var')
oob_prox = proximity;
end
%i handle the below in the mex file
% if proximity
% prox = zeros(N,N);
% proxts = 1;
% else
% prox = 1;
% proxts = 1;
% end
%i handle the below in the mex file
if localImp
importance = TRUE;
% impmat = zeors(D,N);
else
% impmat = 1;
end
if importance
if (nPerm<1)
nPerm = int32(1);
else
nPerm = int32(nPerm);
end
%classRF
% impout = zeros(D,nclass+2);
% impSD = zeros(D,nclass+1);
else
% impout = zeros(D,1);
% impSD = 1;
end
%i handle the below in the mex file
%somewhere near line 157 in randomForest.default.R
if addclass
% nsample = 2*n;
else
% nsample = n;
end
Stratify = (length(sampsize)>1);
if (~Stratify && sampsize>N)
error('Sampsize too large')
end
if Stratify
if ~exist('strata','var')
strata = Y;
end
nsum = sum(sampsize);
if ( ~isempty(find(sampsize<=0)) || nsum==0)
error('Bad sampsize specification');
end
else
nsum = sampsize;
end
%i handle the below in the mex file
%nrnodes = 2*floor(nsum/nodesize)+1;
%xtest = 1;
%ytest = 1;
%ntest = 1;
%labelts = FALSE;
%nt = ntree;
%[ldau,rdau,nodestatus,nrnodes,upper,avnode,mbest,ndtree]=
%keyboard
if Stratify
strata = int32(strata);
else
strata = int32(1);
end
Options = int32([addclass, importance, localImp, proximity, oob_prox, do_trace, keep_forest, replace, Stratify, keep_inbag]);
if DEBUG_ON
%print the parameters that i am sending in
fprintf('size(x) %d\n',size(X));
fprintf('size(y) %d\n',size(Y));
fprintf('nclass %d\n',nclass);
fprintf('size(ncat) %d\n',size(ncat));
fprintf('maxcat %d\n',maxcat);
fprintf('size(sampsize) %d\n',size(sampsize));
fprintf('sampsize[0] %d\n',sampsize(1));
fprintf('Stratify %d\n',Stratify);
fprintf('Proximity %d\n',proximity);
fprintf('oob_prox %d\n',oob_prox);
fprintf('strata %d\n',strata);
fprintf('ntree %d\n',ntree);
fprintf('mtry %d\n',mtry);
fprintf('ipi %d\n',ipi);
fprintf('classwt %f\n',classwt);
fprintf('cutoff %f\n',cutoff);
fprintf('nodesize %
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
粒子群算法PSO优化随机森林RF(PSO-RF)分类模型-二分类及多分类模型-MATLAB源代码-附带使用教程及注意事项 本代码详细图文介绍,请点击博客主页查找对应文章查看。 代码有使用教程及注意事项,可保证运行,运行失败或报错免费解决。 分类算法能够自动学习数据的特征,并根据这些特征将数据划分为不同的类别。这种自动化、智能化的分类方式,不仅提高了分类的准确性和效率,还能够处理复杂、高维的数据集。分类算法能够根据已有的数据,构建出数据之间的关联关系,进而对未来的数据进行预测。例如,在股票价格预测、销售额预测等场景中,预测算法能够帮助我们把握市场趋势,制定更加科学的决策。
资源推荐
资源详情
资源评论
收起资源包目录
粒子群算法优化随机森林PSO-RF分类.rar (12个子文件)
粒子群算法优化随机森林PSO-RF分类
plot_roc.m 866B
使用教程-PSO-RF分类.docx 282KB
classRF_train.m 9KB
initialization.m 567B
main.m 3KB
~$2.xlsx 165B
classRF_predict.m 979B
PSO.m 2KB
mexClassRF_predict.mexw64 26KB
mexClassRF_train.mexw64 43KB
fun.m 476B
data.xlsx 16KB
共 12 条
- 1
资源评论
Matlab神经网络深度学习
- 粉丝: 1w+
- 资源: 109
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功