Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data\MNIST\raw\train-images-idx3-ubyte.gz
100%|████████████████████████████████████████████████████████████████████| 9912422/9912422 [00:02<00:00, 3632046.03it/s]
Extracting ./data\MNIST\raw\train-images-idx3-ubyte.gz to ./data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data\MNIST\raw\train-labels-idx1-ubyte.gz
100%|█████████████████████████████████████████████████████████████████████████| 28881/28881 [00:00<00:00, 446700.13it/s]
Extracting ./data\MNIST\raw\train-labels-idx1-ubyte.gz to ./data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data\MNIST\raw\t10k-images-idx3-ubyte.gz
100%|█████████████████████████████████████████████████████████████████████| 1648877/1648877 [00:02<00:00, 559002.47it/s]
Extracting ./data\MNIST\raw\t10k-images-idx3-ubyte.gz to ./data\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data\MNIST\raw\t10k-labels-idx1-ubyte.gz
100%|██████████████████████████████████████████████████████████████████████████| 4542/4542 [00:00<00:00, 4496230.53it/s]
Extracting ./data\MNIST\raw\t10k-labels-idx1-ubyte.gz to ./data\MNIST\raw
Epoch [1/10], Train Loss: 0.3743
Test Loss: 0.0433, Test Accuracy: 0.9860
Epoch [2/10], Train Loss: 0.0544
Test Loss: 0.0342, Test Accuracy: 0.9895
Epoch [3/10], Train Loss: 0.0398
Test Loss: 0.0229, Test Accuracy: 0.9927
Epoch [4/10], Train Loss: 0.0304
Test Loss: 0.0167, Test Accuracy: 0.9944
Epoch [5/10], Train Loss: 0.0252
Test Loss: 0.0252, Test Accuracy: 0.9935
Epoch [6/10], Train Loss: 0.0213
Test Loss: 0.0194, Test Accuracy: 0.9934
Epoch [7/10], Train Loss: 0.0192
Test Loss: 0.0207, Test Accuracy: 0.9939
Epoch [8/10], Train Loss: 0.0160
Test Loss: 0.0151, Test Accuracy: 0.9956
Epoch [9/10], Train Loss: 0.0137
Test Loss: 0.0164, Test Accuracy: 0.9953
Epoch [10/10], Train Loss: 0.0140
Test Loss: 0.0163, Test Accuracy: 0.9952
Training finished!
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
# Pytorch手写数字分类 AlexNet卷积神经网络 MNIST 包含绘板识别程序 1. 使用pytorch实现AlexNet手写数字图像分类; 2. 实现了训练代码,运行train.py可以进行训练; 3. 包含训练好的权重文件,保存在ckpt/alexnet_mnist.pth; 4. 使用pyqt5实现了可视化的绘板识别程序,可在窗口中绘制手写数字,点击识别运行模型得到识别结果(运行inference.py)
资源推荐
资源详情
资源评论
收起资源包目录
Pytorch手写数字分类 AlexNet卷积神经网络 MNIST 包含绘板识别程序.zip (14个子文件)
alexnet_mnist
utils.py 1KB
data
MNIST
raw
t10k-images-idx3-ubyte.gz 1.57MB
train-images-idx3-ubyte 44.86MB
t10k-images-idx3-ubyte 7.48MB
train-labels-idx1-ubyte.gz 28KB
t10k-labels-idx1-ubyte 10KB
train-images-idx3-ubyte.gz 9.45MB
t10k-labels-idx1-ubyte.gz 4KB
train-labels-idx1-ubyte 59KB
model.py 1KB
inference.py 3KB
log.txt 3KB
ckpt
alexnet_mnist.pth 222.4MB
train.py 4KB
共 14 条
- 1
资源评论
两只程序猿
- 粉丝: 381
- 资源: 159
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功