SJTU campus wifi pattern mining and analysis
=============
Demographic prediction is an important component of user profile modeling. Accurate prediction of users’ demographics can help many applications, ranging from web search to behavior targeting.
In this project, we focus on how to predict mobile Internet users’ demographics of gender, age and college of students on campus, based on spatial-cyber-semantic analysis (including user trajectory and pattern extraction, user online web page analysis and semantic mining on user search keywords), using dataset collected from SJTU campus Wi-Fi networks.
The prediction accuracy of the ensemble model is around 85%.
System framework
----
![Alt Text](https://raw.githubusercontent.com/qiangsiwei/campus_wifi_analysis/master/figure/00.png)
Code organization
----
![Alt Text](https://raw.githubusercontent.com/qiangsiwei/campus_wifi_analysis/master/figure/c.png)
Data set summary
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/01.png)
Users' observation and online time during 24 hours on a typical weekday
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/02.png)
Users' online behavior from HTTP aspect
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/03.png)
Users' online behavior from keyword aspect
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/04.png)
Users' spatial matrix of different semantic locations for various age groups
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/05.png)
Users' posterior probability comparison of keywords for different genders
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/06.png)
Model's accuracy with different classifiers
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/07.png)
Model's accuracy with different feature dimensions
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/08.png)
Most important features in different tasks
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/09.png)
Model's accuracy with different tasks
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/10.png)
Model's overall performance
----
![Alt Text](https://github.com/qiangsiwei/campus_wifi_analysis/blob/master/figure/11.png)
土豆片片
- 粉丝: 1853
- 资源: 5869
最新资源
- 【创新无忧】基于金豺优化算法GJO优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于减法平均优化算法SABO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于金豺优化算法GJO优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于金豺优化算法GJO优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于金豺优化算法GJO优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于金豺优化算法GJO优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于金豺优化算法GJO优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于金豺优化算法GJO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于金枪鱼优化算法TSO优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于鲸鱼优化算法WOA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈