第 48 卷 第 6 期 电 子 科 技 大 学 学 报 Vol.48 No.6
2019年11月 Journal of University of Electronic Science and Technology of China Nov. 2019
改进双向二维局部保持投影的人脸识别算法
吴 斌,王利龙
*
,邵延华
(西南科技大学信息工程学院 四川 绵阳 621010)
【摘要】为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合
二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算
法。首先,引入样本类别信息改进权重矩阵,增强2DLPP算法对样本变化的鲁棒性;其次,提出改进2DLPP+2DPCA、
2DLPP+2DLDA两种融合算法并分别用于输入样本图像数据的行、列方向特征提取。在特征选择后得到行、列方向上的最优
投影;最后,通过对样本数据进行行、列方向投影,利用最近邻分类器对样本数据进行分类并获得在给定数据集上的识别结
果。在人脸数据集ORL、YA LE 和AR上的实验结果表明,该算法在人脸识别性能上总体优于2DPCA、2DLDA、2DLPP、(2D)
2
PCA、
(2D)
2
LDA、(2D)2PCALDA和(2D)
2
LPP-PCA等算法。
关 键 词 人脸识别; 特征提取; 二维线性鉴别分析; 二维局部保持投影; 二维主成分分析
中图分类号 TP391.4 文献标志码 A doi:10.3969/j.issn.1001-0548.2019.06.015
Face Recognition Algorithm Based on Improved Bi-directional
Two Dimensional Locality Preserving Projection
WU Bin, WANG Li-long
*
, and SHAO Yan-hua
(Information Engineering School, Southwest University of Science and Technology Mianyang Sichuan 621010)
Abstract In order to better deal with the problem of small sample size, and to overcome the defect of
two-dimensional locality preserving projection (2DLPP) algorithm which can only keep the local nature of the data,
an improved bi-directional two dimensional locality preserving projection algorithm for face recognition is
proposed, by combining the characteristics of Two-Dimensional Principal Component Analysis (2DPCA) and
Two-Dimensional Linear Discriminate Analysis (2DLDA). First, it introduced the sample class information to
improve the weight matrix, and enhances the robustness of the 2DLPP algorithm to samples’ changes. Second, two
fusion algorithms of 2DLPP+2DPCA and 2DLPP+2DLDA were improved to the feature extraction of row and
column direction of the input sample image data. After the feature selection, the optimal projection in row and
column direction was obtained. Finally, by performing row and column direction projection on the sample data, the
nearest neighbor classification was used to classify the sample data and obtain the recognition results on the given
datasets. Experimental results on the face datasets ORL, YALE and AR show that the proposed algorithm is
generally superior to the algorithms such as 2DPCA, 2DLDA, 2DLPP, (2D)2PCA, (2D)2LDA, (2D)2PCALDA,
and (2D)2LPP-PCA in face recognition performance.
Key words face recognition; feature extraction; two-dimensional linear discriminate analysis (2DLDA);
two-dimensional locality preserving projection(2DLPP); two-dimensional principal component analysis(2DPCA)
收稿日期:2018 - 09 - 26;修回日期:2019 - 03 - 12
基金项目:国家自然科学基金(61601382);四川省教育厅项目(17ZB0454)
作者简介:吴斌(1965 - ),男,教授,主要从事智能控制、图像处理及其应用等方面的研究.
通信作者:王利龙,Email: 2205877852@qq.com
得益于当前机器视觉与模式识别等领域的普遍
研究,人脸识别算法
[1]
得到了更为广泛的改进与应
用,其中以最能表征人脸特征的流形学习算法尤为
突出。
传统基于子空间的流形学习算法
[2-4]
将图像矩
阵降维到一维向量的过程会破坏样本数据结构,并
可能丢失部分有用信息。文献[5]提出二维主成分分
析算法(2DPCA),利用原始图像构建协方差矩阵来
获取特征向量,保留了图像数据全局信息。文献[6]
提出二维线性鉴别分析算法(2DLDA),能克服矩阵
自身隐式奇异问题,选择使得Fisher判别准则函数达
到极值的向量作为样本数据点的最佳投影方向,并
将样本投影到该方向得到最大类间散度和最小类内
散度,具有较高的鉴别能力,但需大量的特征矩阵。
万方数据