没有合适的资源?快使用搜索试试~ 我知道了~
Multiple Linear and 1D Regression
需积分: 9 3 下载量 183 浏览量
2018-10-02
20:23:37
上传
评论
收藏 4.7MB PDF 举报
温馨提示
Regression is the study of the conditional distribution Y |x of the response Y given the p × 1 vector of nontrivial predictors x. In a 1D regression model, Y is conditionally independent of x given a single linear combination α + βTx of the predictors, written Y x|(α + βTx) or Y x|βTx. Many of the most used statistical methods are 1D models, including generalized linear models such as multiple linear regression, logistic regression, and Poisson regression
资源推荐
资源详情
资源评论
Multiple Linear and 1D Regression
David J. Olive
Southern Illinois University
Department of Mathematics
Mailcode 4408
Carbondale, IL 62901-4408
dolive@math.siu.edu
January 4, 2010
Contents
Preface vi
1 Introduction 1
1.1 Multiple Linear Regression ................. 5
1.2 Logistic Regression ...................... 9
1.3 Poisson Regression ....................... 12
1.4 Single Index Models ...................... 16
1.5 Survival Regression Models ................. 19
1.6 Variable Selection ....................... 20
1.7 Other Issues ........................... 25
1.8 Complements .......................... 27
1.9 Problems ............................. 27
2 Multiple Linear Regression 28
2.1 The MLR Model ........................ 28
2.2 Checking Goodness of Fit .................. 31
2.3 Checking Lack of Fit ..................... 35
2.3.1 Residual Plots ..................... 36
2.3.2 Other Model Violations ............... 40
2.4 The ANOVA F TEST ..................... 42
2.5 Prediction ............................ 49
2.6 The Partial F or Change in SS TEST ........... 56
2.7 The Wald t Test ........................ 61
2.8 The OLS Criterion ....................... 64
2.9 Two Important Special Cases ................ 68
2.9.1 The Location Model .................. 68
2.9.2 Simple Linear Regression .............. 69
2.10 The No Intercept MLR Model ............... 71
i
2.11 Summary ............................. 74
2.12 Complements .......................... 77
2.12.1 Lack of Fit Tests .................... 79
2.13 Problems ............................. 81
3 Building an MLR Model 102
3.1 Predictor Transformations ..................103
3.2 Graphical Methods for Response Transformations . . . 109
3.3 Main Effects, Interactions and Indicators ........116
3.4 Variable Selection .......................118
3.5 Diagnostics ...........................141
3.6 Outlier Detection .......................146
3.7 Summary .............................151
3.8 Complements ..........................155
3.9 Problems .............................160
4 WLS and Generalized Least Squares 181
4.1 Random Vectors ........................181
4.2 GLS, WLS and FGLS .....................183
4.3 Inference for GLS .......................188
4.4 Complements ..........................191
4.5 Problems .............................191
5 One Way ANOVA 194
5.1 Introduction ...........................194
5.2 Fixed Effects One Way ANOVA ..............196
5.3 Random Effects One Way ANOVA ............207
5.4 Response Transformations for Experimental Design . . 209
5.5 Summary .............................211
5.6 Complements ..........................216
5.7 Problems .............................222
6 K Way ANOVA 234
6.1 Two Way ANOVA .......................234
6.2 kWayAnovaModels .....................240
6.3 Summary .............................240
6.4 Complements ..........................243
6.5 Problems .............................243
ii
7 Block Designs 248
7.1 One Way Block Designs ...................249
7.2 Blocking with the K Way Anova Design .........253
7.3 Latin Square Designs .....................255
7.4 Summary .............................259
7.5 Complements ..........................262
7.6 Problems .............................263
8 Orthogonal Designs 267
8.1 Factorial Designs ........................267
8.2 Fractional Factorial Designs .................283
8.3 Plackett Burman Designs ..................288
8.4 Summary .............................291
8.5 Complements ..........................303
8.6 Problems .............................304
9 More on Experimental Designs 311
9.1 Split Plot Designs .......................311
9.1.1 Whole Plots Randomly Assigned to A ......312
9.1.2 Whole Plots Assigned to A as in a CRBD ....314
9.2 Review of the DOE Models .................317
9.3 Summary .............................320
9.4 Complements ..........................324
9.5 Problems .............................324
10 Logistic Regression 329
10.1 Binary Regression .......................329
10.2 Binomial Regression ......................335
10.3 Inference .............................340
10.4 Variable Selection .......................350
10.5 Complements ..........................358
10.6 Problems .............................361
11 Poisson Regression 375
11.1 Poisson Regression .......................375
11.2 Inference .............................383
11.3 Variable Selection .......................388
11.4 Complements ..........................393
iii
11.5 Problems .............................395
12 Generalized Linear Models 401
12.1 Introduction ...........................401
12.2 Multiple Linear Regression .................403
12.3 Logistic Regression ......................404
12.4 Poisson Regression .......................406
12.5 Inference and Variable Selection ..............407
12.6 Complements ..........................414
12.7 Problems .............................415
13 Theory for Linear Models 416
13.1 Complements ..........................416
13.2 Problems .............................417
14 Multivariate Models 419
14.1 The Multivariate Normal Distribution ..........420
14.2 Elliptically Contoured Distributions ............424
14.3 Sample Mahalanobis Distances ...............428
14.4 Complements ..........................429
14.5 Problems .............................429
15 1D Regression 433
15.1 Estimating the Sufficient Predictor ............436
15.2 Visualizing 1D Regression ..................441
15.3 Predictor Transformations ..................449
15.4 Variable Selection .......................450
15.5 Inference .............................461
15.6 Complements ..........................472
15.7 Problems .............................475
16 Survival Analysis 481
16.1 Univariate Survival Analysis .................482
16.2 Proportional Hazards Regression ..............495
16.2.1 Visualizing the Cox PH Regression Model ....496
16.2.2 Testing and Variable Selection ...........502
16.3 Weibull and Exponential Regression ............509
16.4 Accelerated Failure Time Models .............516
iv
剩余640页未读,继续阅读
资源评论
Alladins
- 粉丝: 1
- 资源: 57
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Python 端口进程管理工具
- VMD-SVM-GWO,基于变分模态分解的灰狼算法优化支持向量机的时间序列预测 直接从Excel中导入数据即可运行,代码注释清晰,适合初学者 在该框架下,可实现 1)GWO算法的改进(领域搜索策略改进
- 多能转的综合能源系统优化调度 本代码构建了含风电、光伏、光热发电系统、燃气轮机、燃气锅炉、电锅炉、储气、储电、储碳、碳捕集装置的综合能源系统优化调度模型,并考虑P2G装置与碳捕集装置联
- NPC三电平逆变器离散化并网仿真,主电路参数见图 使用载波层叠方式,可以正常运行
- 19pptxpptxppt
- re表达式-素材.zip
- 2025年会晚会企业员工风采展示相册模板.pptx
- 复古电影胶卷素材同学聚会电子相册模板.pptx
- 复古黑板素材毕业纪念册模板.pptx
- 复古怀旧教室桌椅素材同学聚会毕业纪念册模板.pptx
- 同学聚会毕业电子相册模板.pptx
- 吉它书本黑板素材毕业纪念电子相册模板.pptx
- 深圳企业年会晚会优秀员工风彩展示相册模板.pptx
- SmartSystemMenu:窗口增强工具,支持置顶、毛玻璃、截图等多项实用功能软件.rar
- 基于MindSpore框架和ResNet50迁移学习的方法实现花卉图像识别分类源码+文档说明+数据集(5类)
- 保时捷Pamela生成器 炫耀你的个性座驾.mp4
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功