参赛说明
1.在赛前我们用 E-mail,并书面通知了每个学校的参赛队号,
如果仍有学校没有收到队号,请于竞赛期间尽快与组委会联系,在交
卷时一定要加上指定的队号,并另寄报名表(不要夹在答卷中)。
2.如果在竞赛中对赛题的理解方面有问题,可以在
www.shumo.com
的论坛上提问,我们将组织命题人在网上解答,不应回
答的,恕不回答。
3.由于是研究生的竞赛题,有一定的难度,因此不必做完上一
个问题,才能回答下一个问题。而且为了完整地把实际问题表达出来,
题目中的问题较多,很可能在四天之内做不完,因此对后面的问题也
可以不作回答,有兴趣的同志可以在竞赛后再作深入研究。
4.每队在 20 日 10:00 前用特快专递寄出论文(以当地邮戳为
准)。并请于赛后几小时之内再将电子版的论文(用光盘或软盘,可
以一个学校的论文刻在一张光盘上)寄给组委会,注意一定与纸质论
文分开来寄。
5.由于与大学生数学建模竞赛时间相同,而评审委员多数身兼
两职,因此评审时间可能较晚,敬请广大参赛研究生谅解。在此期间
欢迎大家对赛题进行深入探讨,我们准备和 2004 年一样正式发表研究
生竞赛的优秀论文,还准备正式发表一些通过竞赛之后的讨论写出的
有关赛题的优秀论文,欢迎广大师生积极参与。
6.由于题目难度不可能完全相同,评审中将向难度较大的题目
倾斜,请研究生在选题时加以考虑。
2005 年全国部分高校研究生数学建模竞赛 A 题
A: Highway Traveling time Estimate and Optimal Routing
Ⅰ
Highway traveling time estimate is crucial to travelers. Hence, detectors are mounted on
some of the US highways. For instance, detectors are mounted on every two-way six-lane
highways of San Antonio city. However, since vehicles tend to change lanes from time to
time, we may ignore vehicle lane change and consider just one lane traffic as shown
below, in which the square boxes stand for detectors.
636 m 417 m 522 m 475 m
travel direction
Detector 1 Detector 2 Detector 3 Detector 4 Detector 5
1. Detectors are able to detect and measure the speed of individual vehicles 24 hours a
day. Average vehicle speed measured within 20 seconds by detectors is reported and
refreshed. The following table provides the real time data (due to the huge volume of
traffic data, only traffic data of the last 20 seconds in every two minutes is in the last 20
seconds. Unit: mile/hour). Please analyze traveling characteristics on highways (for
instance, congestion and its dispersion. Typically, it is not considered as congestion if
traffic speed is higher than 50 mile/hr). If a vehicle passes the detector at time t, how long
will it take for this vehicle to travel to the fifth sensor? Please design an algorithm for
estimating such travel times. Make sure that you demonstrate the rationality and accuracy
of your algorithm. If traffic data is provided every 20 seconds rather than every 2
minutes, how this information is going to affect your estimate?
All the conditions stay the same as in the previous problem. If detectors can measure
not only vehicle speed, but also traffic volume per unit time (see table below. The unit of
Flow is the number of cars/20 seconds), does this additional information help to improve
the rationality and accuracy of your algorithm? If your answer is yes, please re-design
your algorithm.
Time
Sensor 1
Sensor 2 Sensor 3 Sensor 4 Sensor 5
Speed Flow Speed Flow Speed Flow Speed Flow Speed Flow
3:40:07 PM
57
10
54
9.7
62
8.9
20 10.7 58 5.9
3:42:07 PM
62
9.5
68
11.4
63
13.6
21 10 59 12.2
3:44:07 PM
56
11.1
62
10.3
61
12.9
19 14.2 60 8.1
3:46:07 PM
58
12.5
61
9.1
59
9.3
23 14.8 61 10
3:48:07 PM
53
11.8
64
6.7
62
12.3
45 9 59 10.1
3:50:07 PM
58
9.3
66
6.4
63
4.5
63 10 56 13.8
3:52:07 PM
55
11.9
63
13
60
9.2
55 11.4 59 18
3:54:07 PM
59
8
62
5.3
63
9.7
65 11 55 11
3:56:07 PM
52
9.8
73
9.7
56
8.3
65 8 62 12
3:58:07 PM
60
14.1
63
13.7
59
12
66 5.1 61 5
4:00:07 PM
55
4.8
64
12.3
61
12.8
65 5.1 59 11
4:02:07 PM
60
13.7
61
7.9
60
12.6
65 11.1 66 0
4:04:07 PM
59
8.7
62
9.1
60
4.1
64 10.6 57 14
4:06:07 PM
58
8
64
8.3
64
14.5
45 7 59 14
4:08:07 PM
55
5.4
63
15.3
63
16
1 9.3 57 7
4:10:07 PM
62
13.7
61
9.1
57
5.4
15 11.5 64 8
4:12:07 PM
59
9.9
63
6.7
62
5
64 6.1 52 14
4:14:07 PM
58
8.5
63
12
62
11.9
40 8.7 60 10
4:16:07 PM
56
8.3
58
9
60
13.7
61 11.5 58 13
4:18:07 PM
60
9.3
64
10.3
65
10
52 10 51 9
4:20:07 PM
59
10.4
66
9.9
68
5
45 14.7 55 15.9
4:22:07 PM
53
14
56
8.6
63
8
55 13.7 40 12.7
4:24:07 PM
57
13
62
13.5
62
13
29 14 54 11.9
4:26:07 PM
58
13.4
64
11.5
63
14
62 13 30 12.9
4:28:07 PM
55
8.3
62
11.3
58
12
8 10.9 33 11.9
4:30:07 PM
59
11
78
8
61
13
39 5.1 51 10.1
4:32:07 PM
59
17.1
67
11.8
61
11
57 11.9 59 16.9
4:34:07 PM
54
7.3
64
10.6
59
9
62 10 60 11.1
4:36:07 PM
59
12
66
7.8
68
5.1
62 10 27 8.3
4:38:07 PM
56
11.7
68
10.4
60
8
20 8.2 49 13.9
4:40:07 PM
57
8.4
60
11.2
65
14.9
37 11 51 11.1
4:42:07 PM
55
10.4
63
12.3
66
6
40 9.9 45 14.2
4:44:07 PM
59
12.1
65
9.2
62
6.9
49 8.8 51 14.6
4:46:07 PM
49
13.4
69
11.5
66
8.1
54 7.8 20 9.2
4:48:07 PM
51
11.8
66
14
61
10.2
21 14.4 30 12.3
4:50:07 PM
53
11.6
60
14.7
62
10.1
2 5.5 34 11.9
4:52:07 PM
53
13.8
62
12.2
50
9.2
21 12 36 7.5
4:54:07 PM
49
14.3
59
12.7
59
10.1
5 3.8 38 14.8
4:56:07 PM
53
13.5
62
13.6
56
11
38 13.2 26 10.1
4:58:07 PM
55
12.8
62
12.8
57
11
23 8.2 37 13.8
5:00:07 PM
56
11.9
62
13
57
10.1
4 14.8 34 11
5:02:07 PM
56
7.6
63
9.7
59
8.9
2 11.9 28 11.6
5:04:07 PM
60
6.6
65
14.7
64
14
47 9.1 29 10.8
5:06:07 PM
55
11.9
63
11
66
7.6
36 12.9 28 9.8
5:08:07 PM
59
10.2
65
8
60
9
40 12.1 37 14.3
5:10:07 PM
60
8.2
64
11
66
9.2
26 14.8 29 12.2
5:12:07 PM
60
8.7
64
5.6
64
7.5
13 9.4 38 13.2
5:14:07 PM
55
13.1
62
8.4
66
5.9
63 8.2 34 12
5:16:07 PM
56
15.5
57
12.4
61
10
61 10.8 27 13
5:18:07 PM
56
13.3
63
5.5
64
6.1
23 7.9 17 9.4
5:20:07 PM
57
13.1
57
12
65
11.9
4 8.8 14 10
5:22:07 PM
51
14
60
10.9
59
7.5
4 9.2 19 6.4
5:24:07 PM
48
12.5
59
8.9
27
9
17 8 21 9
5:26:07 PM
46
11.6
57
7.4
2
8.9
5 7.8 28 9.7
5:28:07 PM
52
12.4
53
12
26
8.9
3 8.5 26 7.9
5:30:07 PM
57
12.6
42
10.6
12
7.8
3 8.5 18 8.2
5:32:07 PM
51
14.4
38
11.6
10
8.5
2 7.9 19 7.8
5:34:07 PM
51
11.4
19
4.7
21
9.2
22 8.3 33 5.6
5:36:07 PM
53
12.4
14
3.7
12
5
2 6.8 42 9.7
5:38:07 PM
40
10.2
13
8.3
2
7.5
3 7.4 40 10.3
5:40:07 PM
39
7.9
14
6.4
2
7.5
2 9.3 38 9.6
5:42:07 PM
42
10.4
8
7
2
8.3
2 9.7 44 9.4
5:44:07 PM
46
5.8
4
6.4
2
5.6
3 7.7 38 11.3