%读取数据
clc
clear
close all
clear global ver
%训练数据和预测数据
%load maydata.mat
[num,ax,ay] = xlsread('aa.xlsx',2,'D3:Q3505');%PSO-BP神经网络数据
for ii = 3503:-1:1
for jj = 1:14
if isnan(num(ii,jj));
num(ii,:) = [];
end
end
end
num2 = num(1:68,:);
num3 = num(69:3417,:);
n1 = randperm(68);
n2 = randperm(3349);
num4 = [num2(n1(1:60),:);num3(n2(1:3000),:)];
% for ii = 1:40
% num4 = [num4;num2(n1(1:60),:)];
% end
num5 = [num2(n1(61:68),:);num3(n2(3001:end),:)];
%找出训练数据和预测数据
input_train=num4(:,1:13)';
output_train=100+10*num4(:,14)';
input_test=num5(:,1:13)';
output_test=100+10*num5(:,14)';
%
% global minAllSamOut;
% global maxAllSamOut;
[AllSamInn,minAllSamIn,maxAllSamIn,AllSamOutn,minAllSamOut,maxAllSamOut]=premnmx(input_train,output_train);
% Evaluating Sample
EvaSamIn=input_test;
EvaSamInn=tramnmx(EvaSamIn,minAllSamIn,maxAllSamIn); % preprocessing
% TargetOfTestSam=output_test; % add reall output of testing samples
% global Ptrain;
Ptrain = AllSamInn;
% global Ttrain;
Ttrain = AllSamOutn;
% Ptest = input_train(:,350:360);
% Ttest = output_train(:,350:360);
% Initialize BPN parameters
% global indim;
indim=13;
% global hiddennum;
hiddennum=20;
% global outdim;
outdim=1;
% Initialize PSO parameters
vmax=0.1; % Maximum velocity
minerr=0.001; % Minimum error
wmax=0.90;
wmin=0.30;
% global itmax; %Maximum iteration number
itmax=100;
c1=2;
c2=2;
for iter=1:itmax
W(iter)=wmax-((wmax-wmin)/itmax)*iter; % weight declining linearly
end
% particles are initialized between (a,b) randomly
a=-1;
b=1;
%Between (m,n), (which can also be started from zero)
m=-1;
n=1;
% global N; % number of particles
N=40;
% global D; % length of particle
D=(indim+1)*hiddennum+(hiddennum+1)*outdim;
% Initialize positions of particles
% rand('state',sum(100*clock));
X=a+(b-a)*rand(N,D,1); %取值范围[-1,1] rand * 2 - 1 ,rand 产生[0,1]之间的随机数
%Initialize velocities of particles
V=0.2*(m+(n-m)*rand(N,D,1));
%
% global fvrec;
MinFit=[];
BestFit=[];
%Function to be minimized, performance function,i.e.,mse of net work 神经网络建立
% global net;
net=newff(minmax(Ptrain),[hiddennum,outdim],{'tansig','purelin'});
fitness=fitcal(X,net,indim,hiddennum,outdim,D,Ptrain,Ttrain,minAllSamOut,maxAllSamOut);
fvrec(:,1,1)=fitness(:,1,1);
[C,I]=min(fitness(:,1,1));
MinFit=[MinFit C];
BestFit=[BestFit C];
L(:,1,1)=fitness(:,1,1); %record the fitness of particle of every iterations
B(1,1,1)=C; %record the minimum fitness of particle
gbest(1,:,1)=X(I,:,1); %the global best x in population
%Matrix composed of gbest vector
for p=1:N
G(p,:,1)=gbest(1,:);
end
for i=1:N;
pbest(i,:,1)=X(i,:);
end
V(:,:,2)=W(1)*V(:,:,1)+c1*rand*(pbest(:,:,1)-X(:,:,1))+c2*rand*(G(:,:,1)-X(:,:,1));
%V(:,:,2)=cf*(W(1)*V(:,:,1)+c1*rand*(pbest(:,:,1)-X(:,:,1))+c2*rand*(G(:,:,1)-X(:,:,1)));
%V(:,:,2)=cf*(V(:,:,1)+c1*rand*(pbest(:,:,1)-X(:,:,1))+c2*rand*(G(:,:,1)-X(:,:,1)));
% limits velocity of particles by vmax
for ni=1:N
for di=1:D
if V(ni,di,2)>vmax
V(ni,di,2)=vmax;
elseif V(ni,di,2)<-vmax
V(ni,di,2)=-vmax;
else
V(ni,di,2)=V(ni,di,2);
end
end
end
X(:,:,2)=X(:,:,1)+V(:,:,2);
for ni=1:N
for di=1:D
if X(ni,di,2)>1
X(ni,di,2)=1;
elseif X(ni,di,2)<-1
X(ni,di,2)=-1;
else
X(ni,di,2)=X(ni,di,2);
end
end
end
%******************************************************
for j=2:itmax
disp('Iteration and Current Best Fitness')
disp(j-1)
disp(B(1,1,j-1))
% Calculation of new positions
fitness=fitcal(X,net,indim,hiddennum,outdim,D,Ptrain,Ttrain,minAllSamOut,maxAllSamOut);
% fvrec(:,1,j)=fitness(:,1,j);
%[maxC,maxI]=max(fitness(:,1,j));
%MaxFit=[MaxFit maxC];
%MeanFit=[MeanFit mean(fitness(:,1,j))];
[C,I]=min(fitness(:,1,j));
MinFit=[MinFit C];
BestFit=[BestFit min(MinFit)];
L(:,1,j)=fitness(:,1,j);
B(1,1,j)=C;
gbest(1,:,j)=X(I,:,j);
[C,I]=min(B(1,1,:));
% keep gbest is the best particle of all have occured
if B(1,1,j)<=C
gbest(1,:,j)=gbest(1,:,j);
else
gbest(1,:,j)=gbest(1,:,I);
end
if C<=minerr, break, end
%Matrix composed of gbest vector
if j>=itmax, break, end
for p=1:N
G(p,:,j)=gbest(1,:,j);
end
for i=1:N;
[C,I]=min(L(i,1,:));
if L(i,1,j)<=C
pbest(i,:,j)=X(i,:,j);
else
pbest(i,:,j)=X(i,:,I);
end
end
V(:,:,j+1)=W(j)*V(:,:,j)+c1*rand*(pbest(:,:,j)-X(:,:,j))+c2*rand*(G(:,:,j)-X(:,:,j));
%V(:,:,j+1)=cf*(W(j)*V(:,:,j)+c1*rand*(pbest(:,:,j)-X(:,:,j))+c2*rand*(G(:,:,j)-X(:,:,j)));
%V(:,:,j+1)=cf*(V(:,:,j)+c1*rand*(pbest(:,:,j)-X(:,:,j))+c2*rand*(G(:,:,j)-X(:,:,j)));
for ni=1:N
for di=1:D
if V(ni,di,j+1)>vmax
V(ni,di,j+1)=vmax;
elseif V(ni,di,j+1)<-vmax
V(ni,di,j+1)=-vmax;
else
V(ni,di,j+1)=V(ni,di,j+1);
end
end
end
X(:,:,j+1)=X(:,:,j)+V(:,:,j+1);
for ni=1:N
for di=1:D
if X(ni,di,j+1)>1
X(ni,di,j+1)=1;
elseif X(ni,di,j+1)<-1
X(ni,di,j+1)=-1;
else
X(ni,di,j+1)=X(ni,di,j+1);
end
end
end
end
disp('Iteration and Current Best Fitness')
disp(j)
disp(B(1,1,j))
disp('Global Best Fitness and Occurred Iteration')
[C,I]=min(B(1,1,:));
% simulation network 网络拟合
for t=1:hiddennum
x2iw(t,:)=gbest(1,((t-1)*indim+1):t*indim,j);
end
for r=1:outdim
x2lw(r,:)=gbest(1,(indim*hiddennum+1):(indim*hiddennum+hiddennum),j);
end
x2b=gbest(1,((indim+1)*hiddennum+1):D,j);
x2b1=x2b(1:hiddennum).';
x2b2=x2b(hiddennum+1:hiddennum+outdim).';
net.IW{1,1}=x2iw;
net.LW{2,1}=x2lw;
net.b{1}=x2b1;
net.b{2}=x2b2;
%% BP网络训练
%网络进化参数
net.trainParam.epochs=1000;
net.trainParam.lr=0.01;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络训练
%[net,per2]=train(net,AllSamInn,AllSamOutn);
net=train(net,AllSamInn,AllSamOutn);
% nettesterr=mse(sim(net,Ptest)-Ttest);
% testsamout = postmnmx(sim(net,Ptest),minAllSamOut,maxAllSamOut);
% realtesterr=mse(testsamout-TargetOfTestSam)
EvaSamOutn = sim(net,EvaSamInn);
EvaSamOut = postmnmx(EvaSamOutn,minAllSamOut,maxAllSamOut);%反归一化
output_test = round((output_test-100)/10);
EvaSamOut = round((EvaSamOut-100)/10);
for ii = 1:length(EvaSamOut)
if EvaSamOut(ii)>0.5
EvaSamOut(ii) =1;
else
EvaSamOut(ii)=0;
end
end
ma = 0;
for ii = 1:length(EvaSamOut)
if EvaSamOut(ii)-output_test(ii)==0
ma = ma+1;
end
end
zhengquelv = ma/length(EvaSamOut)*100
error=EvaSamOut-output_test;
errormape=(EvaSamOut-output_test)./output_test;
% [BPoutput1,error1] = bpp(num4,num5);
figure(1)
grid
hold on
plot((BestFit),'r');
title(['PSO适应度曲线 ' '最优代数=' I]);
xlabel('进化代数');ylabel('适应度');
legend('平均适应度','最佳适应度');
disp('适应度 变量');
figure(2)
grid
plot(EvaSamOut,':og')
% hold on
% plot(BPoutput1,':ob')
hold on
plot(output_test,'-*r');
legend('粒子群优化BP预测输出','期望输出')%,
title('PSO-BP网络预测输出','fontsize',12)
ylabel('函数输出','fontsize',12)
xlabel('样本','fontsize',12)
% figure(3)
% % plot(error1./output_test,'*g-');
% % hold on
% plot((EvaSamOut-output_test)./output_test,'*r-')
% % hold off
% title('PSO-BP神经网络预测误差百分比')
% legend('粒子群优化BP预测输出')
% figure(4)
% hist(errormape);
% title('PSO-BP神经网络预测误差频率分布直方图');
% ylabel('频率(次)','fontsize',12)
% xlabel('相对误差','fontsize',12)
% MAE=(sum(abs(errormape)))/24 %绝对平均误差
% RMSE=sqrt((sum(errormape.^2))/24)%RMSE 均方根误差公式
![avatar](https://profile-avatar.csdnimg.cn/3165706ad4e540aeb062dd5ebcf069a7_abc991835105.jpg!1)
![avatar-vip](https://csdnimg.cn/release/downloadcmsfe/public/img/user-vip.1c89f3c5.png)
神经网络机器学习智能算法画图绘图
- 粉丝: 2857
- 资源: 660
最新资源
- #_ssm_127_mysql_私人书店管理系统_.zip
- #_ssm_128_mysql_网络安全与信息管理学院班级管理系统_.zip
- #_ssm_132_mysql_校园生活管理系统_.zip
- #_ssm_133_mysql_校园招聘信息管理系统_.zip
- #_ssm_135_mysql_新疆旅游管理系统_.zip
- #_ssm_139_mysql_一站式乡村服务系统wlw_.zip
- #_ssm_137_mysql_数据结构课堂学生考勤管理系统_.zip
- #_ssm_145_mysql_中学教务管理系统_.zip
- #_ssm_146_mysql_作业提交与批改程序_.zip
- #_ssm_147_mysql_毕业生离校管理系统_.zip
- #_ssm_151_mysql_在线汽车交易系统_.zip
- C++学习项目资料分享
- 利用ai漫改渐变国庆头像项目玩法教程,可一键生成风口赛道
- #_ssm_154_mysql_中小型超市管理系统_.zip
- 混剪德云语录项目玩法教程,带你揭秘流量密码
- Redis-Windows-8.0
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)