#Spark-ALS
简介
ALS是alternating least squares的缩写 , 意为交替最小二乘法;而ALS-WR是alternating-least-squares with weighted-λ -regularization的缩写,意为加权正则化交替最小二乘法。该方法常用于基于矩阵分解的推荐系统中。例如:将用户(user)对商品(item)的评分矩阵分解为两个矩阵:一个是用户对商品隐含特征的偏好矩阵,另一个是商品所包含的隐含特征的矩阵。在这个矩阵分解的过程中,评分缺失项得到了填充,也就是说我们可以基于这个填充的评分来给用户最商品推荐了。
ALS is the abbreviation of squares alternating least, meaning the alternating least squares method; and the ALS-WR is alternating-least-squares with weighted- lambda -regularization acronym, meaning weighted regularized alternating least squares method. This method is often used in recommender systems based on matrix factorization. For example, the user (user) score matrix of item is decomposed into two matrices: one is the user preference matrix for the implicit features of the commodity, and the other is the matrix of the implied features of the commodity. In the process of decomposing the matrix, the score missing is filled, that is, we can give the user the most recommended commodity based on the filled score.
ALS-WR算法,简单地说就是:
(数据格式为:userId, itemId, rating, timestamp )
1 对每个userId随机初始化N(10)个factor值,由这些值影响userId的权重。
2 对每个itemId也随机初始化N(10)个factor值。
3 固定userId,从userFactors矩阵和rating矩阵中分解出itemFactors矩阵。即[Item Factors Matrix] = [User Factors Matrix]^-1 * [Rating Matrix].
4 固定itemId,从itemFactors矩阵和rating矩阵中分解出userFactors矩阵。即[User Factors Matrix] = [Item Factors Matrix]^-1 * [Rating Matrix].
5 重复迭代第3,第4步,最后可以收敛到稳定的userFactors和itemFactors。
6 对itemId进行推断就为userFactors * itemId = rating value;对userId进行推断就为itemFactors * userId = rating value。
#SparkALSByStreaming.java
基于Hadoop、Flume、Kafka、spark-streaming、logback、商城系统的实时推荐系统DEMO
Real time recommendation system DEMO based on Hadoop, Flume, Kafka, spark-streaming, logback and mall system
商城系统采集的数据集格式 Data Format:
用户ID,商品ID,用户行为评分,时间戳
UserID,ItemId,Rating,TimeStamp
53,1286513,9,1508221762
53,1172348420,9,1508221762
53,1179495514,12,1508221762
53,1184890730,3,1508221762
53,1210793742,159,1508221762
53,1215837445,9,1508221762
没有合适的资源?快使用搜索试试~ 我知道了~
基于Spark MLlib平台,通过协同过滤算法实现电影推荐功能+源代码+文档说明
共22个文件
dat:3个
java:3个
part-00000:3个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 45 浏览量
2024-03-28
15:42:50
上传
评论
收藏 5.77MB ZIP 举报
温馨提示
- 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! <项目介绍> 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
资源推荐
资源详情
资源评论
收起资源包目录
Movie-Prediction-master.zip (22个子文件)
Movie-Prediction-master
data
users.dat 131KB
ratings.dat 23.45MB
movies.dat 167KB
README.md 92B
Spark_ALS
receivedBlockMetadata
log-1508214772062-1508214832062 634B
pom.xml 2KB
src
main
java
log4j.properties 262B
com
hyr
sparkml
als
JavaALSExampleByMl.java 4KB
SparkALSByStreaming.java 6KB
JavaALSExampleByMlLib.java 5KB
data
sample_movielens_ratings.txt 32KB
target
classes
log4j.properties 262B
README.md 3KB
result
userFea.txt
part-00003 108B
part-00002 109B
part-00000 121B
part-00001 124B
productFea.txt
part-00003 381B
part-00002 386B
part-00000 381B
part-00001 383B
ratesAndPreds.txt
part-00000 50KB
共 22 条
- 1
资源评论
机器学习的喵
- 粉丝: 2015
- 资源: 1784
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 培训效果评估调查问卷(修改版).docx
- 中国地级市CO2排放数据(2000-2023年).zip
- 基于MicroPython在ESP32上用TFT-LCD-ST7735显示图像
- 北大纵横—江西泓泰—1201人力资源管理概论培训.ppt
- 北大纵横—江西泓泰—泓泰培训制度-FINAL.doc
- 北大纵横—江西泓泰—江西泓泰工作分析培训报告-final.ppt
- 北大纵横—江西泓泰—人力资源规划制度培训.ppt
- 北大纵横—江西泓泰—瑞兴管理思想培训.ppt
- 北大纵横—江西泓泰—瑞兴人力资源管理培训-招聘和发展.ppt
- 北大纵横—江西泓泰—瑞兴人力资源管理培训-培训.ppt
- 北大纵横—金瀚—冬映红培训制度-0621.doc
- 北大纵横—金瀚—福科多培训制度-0621.doc
- 北大纵横—金瀚—金瀚集团全面预算管理培训报告.ppt
- 北大纵横—金瀚—培训制度-0618.doc
- 北大纵横—金瀚—全面预算管理培训-word.doc
- 2022-2023年度广东省职校信息安全管理与评估竞赛试题解析
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功