# CCTA Hierarchical Energy Management System Example
This is the example system that was presented in the conference publication of the PARODIS framework.
It is the model of an energy management system of an office building, which is controlled using a hierarchical MPC approach.
The model consists of a higher level, representing the building with all components and the consideration of one global temperature zone.
The lower level represents the 9 seperate temperature zones of the building.
The higher level controller will derive an optimal input for the entire building using Pareto optimization and the conflicting objectives of minimizing monetary costs and minimizing temperature deviation from 21°C.
The lower level then distributes the allotted total heating/cooling power between the 9 temperature zones using economic MPC to minimize the individual rooms' temperature deviation.
All files for the agents, i.e. the model, cost functions, eval functions and parameter/disturbance sources can be found in the `agents` directory.
In the `/data/` folder, you may find the CSV file containing the real disturbances that are applied to the system during simulation.
This readme should give a brief overview over the system. For a thorough explanation of the model, the approach and the applied Pareto optimization, the user is refered to:
* [PARODIS: One MPC framework to control them all. Almost.](https://tuprints.ulb.tu-darmstadt.de/18600/), T. Schmitt, J.Engel, M. Hoffmann, T. Rodemann, 2021 IEEE Conference on Control Technology and Applications (CCTA), San Diego, Calfiornia, 8.8. - 11.8.2021, DOI: 10.26083/tuprints-00018600,
* [Multi-objective model predictive control for microgrids](https://www.honda-ri.de/pubs/pdf/4361.pdf), T. Schmitt, T. Rodemann, and J. Adamy, at - Automatisierungstechnik, vol. 68, no. 8, pp. 687 – 702, 2020.
## System Model
The example system represents a company building, which has a
* Stationary buffer battery
* Solar system (Photo-voltaic)
* Combined heat and power plant (CHP)
* Gas radiator
* Electric air conditioning
* Connection to the public power grid
The states of the higher level are:
- The energy stored in the buffer battery `E(k)`
- The building temperature `theta_b(k)`
As inputs to the higher level are considered:
- The power drawn from/delivered into the public power grid `P_grid`
- The power generated from the CHP `P_chp`
- The heating power of the gas radiator `Q_rad`
- The cooling power of the air conditioning `Q_cool`
The system is disturbed by the base load demand of the building `P_dem`, the solar irradiation `P_ren` and the outside temperature `theta_air`.
In the lower level, there is one state for each temperature zone, i.e. `theta_i(k)`.
There are further two inputs to each temperature zone, `Q_heat,i(k)` for the heating power and `Q_cool,i(k)` for the cooling power.
The temperature zones are thermally coupled with each other and are disturbed by the outside temperature `theta_air`.
## Disturbances
For the prediction and realisation of the disturbances, measured historical data is used. These can be found in the `data` directory.
In this example, the real and predicted disturbances are assumed to be the same, i.e. we assume perfect predictions.
## MPC
The system is to be controlled using MPC, such that the monetary operational costs are minimised and the inside temperature in the building is kept at around 21°C.
The first objective is reflected by summing the electricity costs and the gas costs, as well as considering peak costs: The maximal peak demand shall be kept low, favorably below an initially set peak.
The second objective if reflected by minimising the quadratic deviation of the state `theta_b(k)` from a temperature set point of `theta_ref = 21°C`
## Pareto Optimization
The high level system considers two cost functions. In this example, the `ParetoController` is used with AWDS as the front determination scheme. This means, that the two objectives are not weighted statically, but that at each time step within the simulation, a Pareto front will be generated and from it a compromise solution for the weighting selected. For more information on Pareto optimization, the reader is refered to the [Wiki](https://github.com/teamparodis/parodis/wiki) and the paper mentioned above.
## Running the example
Simply run the `ccta_main_example.m` script. If you want to turn on live plotting, set the flag `sim.config.livePlot = true` in the script. If you want to turn of Pareto optimization and control run the system "classicaly", open `createAnsatz_HL.m` and replace the line
```matlab
controller = ParetoController();
```
by
```matlab
controller = SymbolicController();
```
![avatar](https://profile-avatar.csdnimg.cn/6b2ea2d510824682ac2af676104b9caf_abackcab.jpg!1)
毕业小助手
- 粉丝: 2768
- 资源: 5583
最新资源
- (源码)基于Go语言的7天从零实现系列项目.zip
- COMSOL燃料电池模型:涵盖等温和不等温类型,附验证图及参考文献,COMSOL燃料电池模型:涵盖等温和不等温模拟验证图及参考文献详解,comsol燃料电池模型,等温和不等温的均有 下面是验证图以及
- (源码)基于Python的Discord Pycord Bot模板.zip
- 基于扩展卡尔曼滤波的车辆质量与道路坡度估计模型(利用递归最小二乘法与Matlab Simulink),基于扩展卡尔曼滤波的车辆质量与道路坡度估计模型(采用递归最小二乘法与Matlab Simulink
- (源码)基于Python Flask框架的食谱分享网站.zip
- 锂离子电池健康与充电状态精准估计项目:基于等效电路模型与扩展卡尔曼滤波器的电压-温度观测器设计及应用,锂离子电池健康与充电状态精准估计:基于等效电路模型与扩展卡尔曼滤波器的电压-温度观测器研究与应用
- (源码)基于EasyX图形库的游戏开发.zip
- 基于YOLOv8的车辆检测计数系统设计与实现:一个基于PyQt5的Python交互界面解决方案 ,基于YOLOv8算法的车辆检测计数系统设计与PyQt5界面实现,DL00334-基于YOLOv8的车辆
- 三菱FX3U PLC与昆仑通泰触摸屏联控松下伺服电机使用实例教程:含CAD接线图与伺服电机使用手册详解,三菱FX3U PLC与昆仑通泰触摸屏联合控制松下伺服电机使用例程:含CAD接线图及伺服电机使用手
- MATLAB环境下分数阶全变分泊松噪声处理的非盲与盲反卷积算法研究,MATLAB R2018A中的分数阶全变分泊松噪声处理:非盲与盲反卷积算法研究与实践,MATLAB环境下分数阶全变分泊松噪声下的非盲
- 磁阻式同步电动机设计与性能研究:真空干泵驱动的温度场仿真与机械轴承抱死分析,磁阻式同步电动机设计与特性分析-真空干泵驱动用电机优化及抱死机理研究,真空干泵驱动用磁阻式同步电动机设计与特性分析 先设计
- MATLAB R2018A中基于超高斯模型的全自动组织图像盲彩色反卷积算法:精细化参数配置与实践指南,MATLAB环境下基于超高斯全自动组织图像盲彩色反卷积方法:算法参数设置与实现详情,MATLAB环
- MATLAB Simulink下的锂电池SOC均衡策略:微网功率盈余分段控制,直流母线电压补偿,快速趋近且充放电状态切换稳定,MATLAB Simulink下的锂电池SOC均衡策略:分段下垂控制助力微
- 太阳能消纳能力评估模型:基于Distflow与线性热网能量流的多区域协同规划改进模型研究,基于线性热网能量流模型的区域综合能源系统太阳能消纳能力评估模型研究,144区域综合能源系统太阳能消纳能力评估模
- 探索COMSOL金属贴片技术:实现高效能带计算与优化,COMSOL金属贴片技术在能带计算中的应用探索,comsol金属贴片,能带计算 ,comsol; 金属贴片; 能带计算,Comsol金属贴片:高
- 锂枝晶生长的影响因素:隔膜厚度与表面涂层的作用及其应力补充效应研究,基于相场方法的锂枝晶生长研究:隔膜厚度与表面涂层对应力的影响,相场锂枝晶-隔膜厚度和表面涂层对枝晶生长影响(补充应力) 参考文献:
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)