# CCTA Hierarchical Energy Management System Example
This is the example system that was presented in the conference publication of the PARODIS framework.
It is the model of an energy management system of an office building, which is controlled using a hierarchical MPC approach.
The model consists of a higher level, representing the building with all components and the consideration of one global temperature zone.
The lower level represents the 9 seperate temperature zones of the building.
The higher level controller will derive an optimal input for the entire building using Pareto optimization and the conflicting objectives of minimizing monetary costs and minimizing temperature deviation from 21°C.
The lower level then distributes the allotted total heating/cooling power between the 9 temperature zones using economic MPC to minimize the individual rooms' temperature deviation.
All files for the agents, i.e. the model, cost functions, eval functions and parameter/disturbance sources can be found in the `agents` directory.
In the `/data/` folder, you may find the CSV file containing the real disturbances that are applied to the system during simulation.
This readme should give a brief overview over the system. For a thorough explanation of the model, the approach and the applied Pareto optimization, the user is refered to:
* [PARODIS: One MPC framework to control them all. Almost.](https://tuprints.ulb.tu-darmstadt.de/18600/), T. Schmitt, J.Engel, M. Hoffmann, T. Rodemann, 2021 IEEE Conference on Control Technology and Applications (CCTA), San Diego, Calfiornia, 8.8. - 11.8.2021, DOI: 10.26083/tuprints-00018600,
* [Multi-objective model predictive control for microgrids](https://www.honda-ri.de/pubs/pdf/4361.pdf), T. Schmitt, T. Rodemann, and J. Adamy, at - Automatisierungstechnik, vol. 68, no. 8, pp. 687 – 702, 2020.
## System Model
The example system represents a company building, which has a
* Stationary buffer battery
* Solar system (Photo-voltaic)
* Combined heat and power plant (CHP)
* Gas radiator
* Electric air conditioning
* Connection to the public power grid
The states of the higher level are:
- The energy stored in the buffer battery `E(k)`
- The building temperature `theta_b(k)`
As inputs to the higher level are considered:
- The power drawn from/delivered into the public power grid `P_grid`
- The power generated from the CHP `P_chp`
- The heating power of the gas radiator `Q_rad`
- The cooling power of the air conditioning `Q_cool`
The system is disturbed by the base load demand of the building `P_dem`, the solar irradiation `P_ren` and the outside temperature `theta_air`.
In the lower level, there is one state for each temperature zone, i.e. `theta_i(k)`.
There are further two inputs to each temperature zone, `Q_heat,i(k)` for the heating power and `Q_cool,i(k)` for the cooling power.
The temperature zones are thermally coupled with each other and are disturbed by the outside temperature `theta_air`.
## Disturbances
For the prediction and realisation of the disturbances, measured historical data is used. These can be found in the `data` directory.
In this example, the real and predicted disturbances are assumed to be the same, i.e. we assume perfect predictions.
## MPC
The system is to be controlled using MPC, such that the monetary operational costs are minimised and the inside temperature in the building is kept at around 21°C.
The first objective is reflected by summing the electricity costs and the gas costs, as well as considering peak costs: The maximal peak demand shall be kept low, favorably below an initially set peak.
The second objective if reflected by minimising the quadratic deviation of the state `theta_b(k)` from a temperature set point of `theta_ref = 21°C`
## Pareto Optimization
The high level system considers two cost functions. In this example, the `ParetoController` is used with AWDS as the front determination scheme. This means, that the two objectives are not weighted statically, but that at each time step within the simulation, a Pareto front will be generated and from it a compromise solution for the weighting selected. For more information on Pareto optimization, the reader is refered to the [Wiki](https://github.com/teamparodis/parodis/wiki) and the paper mentioned above.
## Running the example
Simply run the `ccta_main_example.m` script. If you want to turn on live plotting, set the flag `sim.config.livePlot = true` in the script. If you want to turn of Pareto optimization and control run the system "classicaly", open `createAnsatz_HL.m` and replace the line
```matlab
controller = ParetoController();
```
by
```matlab
controller = SymbolicController();
```
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随
资源推荐
资源详情
资源评论
收起资源包目录
毕业设计&课设-这是PARODIS的官方存储库,PARODIS是用于分布式系统的Matlab PAReto最优模型预测.zip (107个子文件)
hl_disturbancesApril2020_15minSteps_ADJUSTED_higherTemperature.csv 78KB
hl_disturbancesApril2020_15minSteps_ADJUSTED.csv 77KB
ll_disturbancesApril2020_15minSteps_ADJUSTED_higherTemperature.csv 38KB
ll_disturbancesApril2020_15minSteps_ADJUSTED.csv 37KB
disturbances.csv 7KB
.gitignore 74B
Agent.m 41KB
TimeSeries.m 40KB
Simulation.m 37KB
uispider_plot.m 28KB
SymbolicController.m 24KB
ExplicitController.m 22KB
ParetoController.m 19KB
ParetoPlot.m 18KB
Controller.m 12KB
Figure.m 11KB
determineAWDS.m 8KB
determineASBI.m 7KB
SourceManager.m 6KB
determineFPBI.m 5KB
createModel.m 5KB
redundancyCheck.m 4KB
coneInit.m 4KB
figures_trajectories.m 4KB
LQRCostFunction.m 4KB
Cost_HL_monetary_industry.m 4KB
MonetaryCostFunction_Industry.m 4KB
figures_all.m 3KB
determineNBI.m 3KB
initializeLex.m 3KB
prepareFPBI.m 3KB
createAnsatz_HL.m 3KB
main_follow_crane.m 3KB
prepareWS.m 3KB
common_figures_HL.m 3KB
prepareASBI.m 3KB
model_LL.m 2KB
create_ems_ansatz.m 2KB
selectATN.m 2KB
main_single_crane.m 2KB
selectAEP.m 2KB
ComfortCostFunction_TimeVarying.m 2KB
Cost_HL_comfort.m 2KB
prepareNBI.m 2KB
selectRoC.m 2KB
building_control_example.m 2KB
createAnsatz_LL.m 2KB
getBorderPoints.m 2KB
initializeMWAN.m 2KB
Cost_LL_comfort.m 2KB
loadDataToStatus.m 2KB
getAdjacentPoints.m 2KB
common_figures_LL.m 2KB
ccta_main_example.m 2KB
dist_prediction.m 1KB
model_HL.m 1KB
CostFunction.m 1KB
initializeMWA.m 1KB
animate_crane_sim.m 1KB
ParetoNormalization.m 1KB
install.m 1KB
model_crane_linear_dist.m 1KB
ems_model_fun.m 1KB
plotParetoForPaper.m 1KB
paretoFilter.m 1KB
model_crane_linear.m 1KB
eval_parameter.m 841B
eval_const.m 781B
selectCUP.m 754B
crossn.m 738B
figures_pareto.m 694B
figures_pareto.m 693B
paretoFrontProjection.m 661B
openInteractivityTool.m 587B
loadFullHistory.m 479B
param_Pgrid_max.m 458B
measure_HL_buildingTemperature_from_LL.m 458B
eval_Pcharge.m 436B
param_get_Pgrid_max.m 432B
disturbance_wind.m 425B
eval_mon_costs.m 416B
paretoSetDiff.m 406B
extractScenario.m 401B
mapToStruct.m 393B
eval_Pcharge.m 365B
createAgent.m 340B
param_x_ref.m 328B
eval_QiMultiplied.m 328B
param_QheatFromHL.m 319B
eval_electricity_costs.m 315B
eval_electricity_costs.m 315B
mouseClick.m 307B
mergeStructs.m 299B
eval_PeffectiveLoad.m 280B
prepareAWDS.m 262B
setNormalizedFront.m 248B
param_QcoolFromHL.m 210B
getFunName.m 209B
README.md 5KB
README.md 4KB
共 107 条
- 1
- 2
资源评论
毕业小助手
- 粉丝: 2762
- 资源: 5583
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【创新无忧】基于樽海鞘优化算法SSA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于樽海鞘优化算法SSA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于樽海鞘优化算法SSA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于樽海鞘优化算法SSA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于樽海鞘优化算法SSA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于樽海鞘优化算法SSA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 基于java+ssm+mysql的网上购物平台开题报告.docx
- 基于java+ssm+mysql的物资物流系统开题报告.doc
- 基于java+ssm+mysql的物资物流系统任务书.doc
- VDA -RPP 中文,产品的生产和交付-稳健的生产过程 RPP-2019 中文、英文.pdf
- 刀轴焊接生产线sw19可编辑全套技术资料100%好用.zip
- 普通的日期格式转大写日期格式
- Java+Swing+Mysql实现企业人事管理系统.zip
- 钢棒自动上料设备sw2020可编辑全套技术资料100%好用.zip
- 基于Android-数据库的答题系统全部资料+详细文档+高分项目.zip
- 基于ASP.NET和SQL Server数据库开发的排课系统(web开发课程设计)全部资料+详细文档+高分项目.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功