没有合适的资源?快使用搜索试试~ 我知道了~
computational geometry note 2013
需积分: 9 3 下载量 134 浏览量
2019-05-07
14:54:51
上传
评论
收藏 1.15MB PDF 举报
温馨提示
These lecture notes are designed to accompany a course on “Computational Geometry” that we teach at the Department of Computer Science, ETH Zürich, in every winter term since 2005. The course has evolved over the years and so have the notes, a first version of which was published in 2008. In the current setting, the course runs over 14 weeks, with three hours of lecture and two hours of exercises each week. In addition, there are three sets of graded homeworks which students have to hand in spread over the course. The target audience are third-year Bachelor or Master students of Mathematics or Computer Science
资源推荐
资源详情
资源评论
Computational Geometry
Lecture Notes HS 2013
Bernd Gärtner <gaertner@inf.ethz.ch>
Michael Hoffmann <hoffmann@inf.ethz.ch>
Friday 10
th
January, 2014
Preface
These lecture notes are designed to accompany a course on “Computational Geometry”
that we teach at the Department of Computer Science, ETH Zürich, in every winter term
since 2005. The course has evolved over the years and so have the notes, a first version of
which was published in 2008. In the current setting, the course runs over 14 weeks, with
three hours of lecture and two hours of exercises each week. In addition, there are three
sets of graded homeworks which students have to hand in spread over the course. The
target audience are third-year Bachelor or Master students of Mathematics or Computer
Science.
The selection of topics and their treatment is somewhat subjective, beyond what
we consider essentials driven by the (diverse) research interests within our working
group. There is a certain slant towards algorithms rather than data structures and a
fair amount of influx from combinatorial geometry. The focus is on low-dimensional
Euclidean space (mostly 2D), although we sometimes discuss possible extensions and/or
remarkable differences when going to higher dimensions. At the end of each chapter
there is a list of questions that we expect our students to be able to answer in the oral
exam.
Most parts of these notes have gone through a number of proof-readings, but expe-
rience tells that there are always a few mistakes that escape detection. So in case you
notice some problem, please let us know, regardless of whether it is a minor typo or
punctuation error, a glitch in formulation, or a hole in an argument. This way the issue
can be fixed for the next edition and future readers profit from your findings.
We thank Tobias Christ, Anna Gundert, Gabriel Nivasch, Júlia Pap, Marek Sulovský,
May Szedlák, and Hemant Tyagi for pointing out errors in preceding versions.
Bernd Gärtner and Michael Hoffmann
Institute of Theoretical Computer Science
ETH Zürich
Universitätstrasse 6
CH-8092 Zürich
Switzerland
E-mail address: {gaertner,hoffmann}@inf.ethz.ch
3
Contents
1 Fundamentals 9
1.1 Models of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Basic Geometric Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Polygons 13
2.1 Classes of Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Polygon Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 The Art Gallery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 Convex Hull 25
3.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Classical Theorems for Convex Sets . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Planar Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Trivial algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Jarvis’ Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 Graham Scan (Successive Local Repair) . . . . . . . . . . . . . . . . . . . 35
3.7 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Chan’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 Plane Graphs and the DCEL 41
4.1 The Euler Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 The Doubly-Connected Edge List . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Manipulating a DCEL . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Graphs with Unbounded Edges . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Line Sweep 51
5.1 Interval Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Segment Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Algebraic degree of geometric primitives . . . . . . . . . . . . . . . . . . . 56
5.5 Red-Blue Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5
剩余171页未读,继续阅读
资源评论
张宇成
- 粉丝: 38
- 资源: 3
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【岗位说明】薪资核算员岗位说明书.doc
- 【岗位说明】信息管理员岗位职责.doc
- 【岗位说明】信息工程部岗位职责表.doc
- 【岗位说明】研发主管岗位职责.doc
- 【岗位说明】研发主管岗位说明.doc
- 【岗位说明】研究室职能说明书.doc
- 【岗位说明】应用技术室职能说明书.doc
- 【岗位说明】硬件产品验证工程师岗位职责.doc
- 【岗位说明】营运支持部岗位职责及工作内容描述.xls
- 【岗位说明】制造部经理.doc
- 【岗位说明】制造部经理岗位职责.doc
- 【岗位说明】质管部岗位职责.doc
- 【岗位说明】质管室职能说明书.doc
- 【岗位说明】质检部职能说明书.doc
- 【岗位说明】硬件产品验证工程师职责说明.doc
- 【岗位说明】原料开发组职能说明书.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功