# Designing Network Design Spaces
## Introduction
[BACKBONE]
We implement RegNetX and RegNetY models in detection systems and provide their first results on Mask R-CNN, Faster R-CNN and RetinaNet.
The pre-trained modles are converted from [model zoo of pycls](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
```latex
@article{radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Usage
To use a regnet model, there are two steps to do:
1. Convert the model to ResNet-style supported by MMDetection
2. Modify backbone and neck in config accordingly
### Convert model
We already prepare models of FLOPs from 400M to 12G in our model zoo.
For more general usage, we also provide script `regnet2mmdet.py` in the tools directory to convert the key of models pretrained by [pycls](https://github.com/facebookresearch/pycls/) to
ResNet-style checkpoints used in MMDetection.
```bash
python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH}
```
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
### Modify config
The users can modify the config's `depth` of backbone and corresponding keys in `arch` according to the configs in the [pycls model zoo](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
The parameter `in_channels` in FPN can be found in the Figure 15 & 16 of the paper (`wi` in the legend).
This directory already provides some configs with their performance, using RegNetX from 800MF to 12GF level.
For other pre-trained models or self-implemented regnet models, the users are responsible to check these parameters by themselves.
**Note**: Although Fig. 15 & 16 also provide `w0`, `wa`, `wm`, `group_w`, and `bot_mul` for `arch`, they are quantized thus inaccurate, using them sometimes produces different backbone that does not match the key in the pre-trained model.
## Results
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
| [R-50-FPN](../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py)| pytorch | 1x | 4.4 | 12.0 | 38.2 | 34.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
|[RegNetX-3.2GF-FPN](./mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py)| pytorch | 1x |5.0 ||40.3|36.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141.log.json) |
|[RegNetX-4.0GF-FPN](./mask_rcnn_regnetx-4GF_fpn_1x_coco.py)| pytorch | 1x |5.5||41.5|37.4|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217.log.json) |
| [R-101-FPN](../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py)| pytorch | 1x | 6.4 | 10.3 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json) |
|[RegNetX-6.4GF-FPN](./mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py)| pytorch | 1x |6.1 ||41.0|37.1|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439.log.json) |
| [X-101-32x4d-FPN](../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | pytorch | 1x | 7.6 | 9.4 | 41.9 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205_034906.log.json) |
|[RegNetX-8.0GF-FPN](./mask_rcnn_regnetx-8GF_fpn_1x_coco.py)| pytorch | 1x |6.4 ||41.7|37.5|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515-09daa87e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515.log.json) |
|[RegNetX-12GF-FPN](./mask_rcnn_regnetx-12GF_fpn_1x_coco.py)| pytorch | 1x |7.4 ||42.2|38|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552-b538bd8b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552.log.json) |
|[RegNetX-3.2GF-FPN-DCN-C3-C5](./mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py)| pytorch | 1x |5.0 ||40.3|36.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726-75f40794.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726.log.json) |
### Faster R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
| [R-50-FPN](../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py)| pytorch | 1x | 4.0 | 18.2 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log
Wanhahawawa
- 粉丝: 0
- 资源: 3
最新资源
- 高速追剪程序,定长追剪,威纶触摸屏+汇川5u全套程序,注释清楚
- H3C命令查询工具.zip
- Ubuntu 20.04 LTS安装与优化全流程指南
- 改进鲸鱼优化算法(IWOA,自己融合了多策略改进,名字自己取的破涕为笑),改进包括circle混沌映射,自适应阈值,非线性收敛因子,以及自适应权重和levy飞行策略,具体公式会在readme说明文
- 课程设计大作业-基于python+tkinter+MySQL的选课系统源码(95分以上)
- 西门子PLC屏幕编辑器WIN11可安装板
- STM32单片机开发的串口双机模拟汽车电量里程项目,两个STM32单片机进行数据交互,模拟主控与驱动传感器发送数据,可以手动调节数据,并显示屏显示出来 包括程序源码和protues仿真8.12版本
- 人形机器人灵巧手行业产业链图谱
- 润达医疗(体外诊断产品及技术研发商,上海润达医疗科技股份有限公司)创投信息
- python学生选课信息管理系统源码(tkinter+MySQL)高分项目
- 伺服系统转动惯量离线辨识算法仿真 1.模型简介 模型为永磁同步电机伺服控制仿真,采用Matlab R2018a Simulink搭建 模型内主要包含DC直流电压源、三相逆变器、永磁同步电机、
- HTML环境中WebSocket的应用解析及优化技巧
- MATLAB环境下一种基于深度学习的癫痫发作自动检测方法 算法运行环境为MATLAB R2021b,执行基于深度学习(LSTM)的癫痫发作自动检测 压缩包=程序+数据+参考 运行需要GPU,需要
- dsafagaghjj
- sprinboot+vue+mysql(保证能运行)
- 考虑用户舒适度的冷热电多能互补综合能源系统优化调度-邹云阳 主要内容: 针对综合能源系统优化调度的研究,具体包括: 1.建立含风光、P2G、燃气轮机、燃气锅炉等多能耦合元件的运行特性模型 2.电、热、
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈