%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 创建模型
num_hiddens = 50; % 隐藏层节点个数
activate_model = 'sig'; % 激活函数
[IW, B, LW, TF, TYPE] = elmtrain(p_train, t_train, num_hiddens, activate_model, 0);
%% 仿真测试
t_sim1 = elmpredict(p_train, IW, B, LW, TF, TYPE);
t_sim2 = elmpredict(p_test , IW, B, LW, TF, TYPE);
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
%% 绘制散点图
sz = 25;
c = 'b';
figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')
figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')
没有合适的资源?快使用搜索试试~ 我知道了~
【ELM回归预测】基于matlab极限学习机数据ELM回归预测【含Matlab源码 2869期】

共9个文件
jpg:5个
m:3个
xlsx:1个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 86 浏览量
2023-09-10
14:46:22
上传
评论
收藏 155KB ZIP 举报
温馨提示
CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化学习极限学习机ELM分类预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化ELM 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化ELM 4.4.3 灰狼算法GWO/狼群算法WPA优化ELM 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化ELM 4.4.5 萤火虫算法FA/差分算法DE优化ELM
资源推荐
资源详情
资源评论





















收起资源包目录











共 9 条
- 1
资源评论



海神之光
- 粉丝: 5w+
- 资源: 7136
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- ObjectARX 2020
- (源码)基于TensorFlow的人工智能写词机.zip
- 计算机二级-网络安全协议.zip
- Huatuo热更新使用教程-BetterStreamingAssets
- 天津大学深度解读deepseek
- (源码)基于PyTorch框架的道路分割系统.zip
- Ollama-darwin Windows版
- ObjectARX 2024
- 管家婆普及版TOP13.11.zip
- 管家婆普及版TOP13.22.zip
- 管家婆普及版TOP13.32.zip
- 软件架构的理论与实践:探讨计算机科学领域的核心技术及其发展历史与实际应用场景
- 5309+清华大学DeepSeek如何赋能职场应用.docx
- 管家婆普及版V9.15.rar
- VINS系列前篇(4)-相机标定及双目IMU联合标定
- 更新数据任务218.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
