% Y: Inputted data;
% Nstd: ratio of the standard deviation of the added noise and that of Y;
% NE: Ensemble member being used
% TNM: total number of modes (not including the trend)
%
function allmode=ceemd(Y,Nstd,NE,TNM)
% find data length
xsize=length(Y);
dd=1:1:xsize;
% Nornaliz data
Ystd=std(Y);
Y=Y/Ystd;
% Initialize saved data
TNM2=TNM+2;
for kk=1:1:TNM2,
for ii=1:1:xsize,
allmode(ii,kk)=0.0;
end
end
for iii=1:1:NE
% adding noise
for i=1:xsize,
temp=randn(1,1)*Nstd;
X1(i)=Y(i)+temp;
X2(i)=Y(i)-temp;
end
% sifting X1
xorigin = X1;
xend = xorigin;
% save the initial data into the first column
for jj=1:1:xsize
mode(jj,1) = xorigin(jj);
end
nmode = 1;
while nmode <= TNM,
xstart = xend;
iter = 1;
while iter<=5,
[spmax, spmin, flag]=extrema(xstart);
upper= spline(spmax(:,1),spmax(:,2),dd);
lower= spline(spmin(:,1),spmin(:,2),dd);
mean_ul = (upper + lower)/2;
xstart = xstart - mean_ul;
iter = iter +1;
end
xend = xend - xstart;
nmode=nmode+1;
% save a mode
for jj=1:1:xsize,
mode(jj,nmode) = xstart(jj);
end
end
% save the trend
for jj=1:1:xsize,
mode(jj,nmode+1)=xend(jj);
end
% add mode to the sum of modes from earlier ensemble members
% 1,size(allmode),2,size(mode)
allmode=allmode+mode;
%%%=============================================================
% sifting X2
xorigin = X2;
xend = xorigin;
% save the initial data into the first column
for jj=1:1:xsize,
mode(jj,1) = xorigin(jj);
end
nmode = 1;
while nmode <= TNM,
xstart = xend;
iter = 1;
while iter<=5,
[spmax, spmin, flag]=extrema(xstart);
upper= spline(spmax(:,1),spmax(:,2),dd);
lower= spline(spmin(:,1),spmin(:,2),dd);
mean_ul = (upper + lower)/2;
xstart = xstart - mean_ul;
iter = iter +1;
end
xend = xend - xstart;
nmode=nmode+1;
% save a mode
for jj=1:1:xsize,
mode(jj,nmode) = xstart(jj);
end
end
% save the trend
for jj=1:1:xsize,
mode(jj,nmode+1)=xend(jj);
end
% add mode to the sum of modes from earlier ensemble members
allmode=allmode+mode;
%fprintf('-');
end
% ensemble average
allmode=allmode/NE/2;
% Rescale mode to origional unit.
allmode=allmode*Ystd;
没有合适的资源?快使用搜索试试~ 我知道了~
数字信号基于matlab CEEMD数字信号分解【含Matlab源码 1383】.zip
共6个文件
m:4个
jpg:2个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 2 下载量 5 浏览量
2021-10-16
17:01:10
上传
评论
收藏 100KB ZIP 举报
温馨提示
CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:GDPSO.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开GDPSO.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、通信、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、信号检测信号识别融合
资源推荐
资源详情
资源评论
收起资源包目录
【数字信号】基于matlab CEEMD数字信号分解【含Matlab源码 1383】.zip (6个子文件)
【数字信号】基于matlab CEEMD数字信号分解【含Matlab源码 1383】
ceemd.m 3KB
COMPUTE_FFT.m 175B
运行结果2.jpg 32KB
MAIN.m 847B
运行结果1.jpg 99KB
extrema.m 2KB
共 6 条
- 1
资源评论
- momoland_2022-11-02资源内容详细全面,与描述一致,对我很有用,有一定的使用价值。
- m0_571347402023-12-20发现一个宝藏资源,资源有很高的参考价值,赶紧学起来~
海神之光
- 粉丝: 5w+
- 资源: 6110
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功