#include <REG52.H>
unsigned char RunMode;
//**********************************System Fuction*************************************************
void Delay1ms(unsigned int count)
{
unsigned int i,j;
for(i=0;i<count;i++)
for(j=0;j<120;j++);
}
unsigned char code LEDDisplayCode[] = { 0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, //0~7
0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E,0xFF};
void Display(unsigned char Value)
{
P3 = LEDDisplayCode[Value];
}
void LEDFlash(unsigned char Count)
{
unsigned char i;
bit Flag;
for(i = 0; i<Count;i++)
{
Flag = !Flag;
if(Flag)
Display(RunMode);
else
Display(0x10);
Delay1ms(100);
}
Display(RunMode);
}
unsigned char GetKey(void)
{
unsigned char KeyTemp,CheckValue,Key = 0x00;
CheckValue = P2&0x32;
if(CheckValue==0x32)
return 0x00;
Delay1ms(10);
KeyTemp = P2&0x32;
if(KeyTemp==CheckValue)
return 0x00;
if(!(CheckValue&0x02))
Key|=0x01;
if(!(CheckValue&0x10))
Key|=0x02;
if(!(CheckValue&0x20))
Key|=0x04;
return Key;
}
unsigned int TimerCount,SystemSpeed,SystemSpeedIndex;
void InitialTimer2(void)
{
T2CON = 0x00; //16 Bit Auto-Reload Mode
TH2 = RCAP2H = 0xFC; //重装值,初始值 TL2 = RCAP2L = 0x18;
ET2=1; //定时器 2 中断允许
TR2 = 1; //定时器 2 启动
EA=1;
}
unsigned int code SpeedCode[]={ 1, 2, 3, 5, 8, 10, 14, 17, 20, 30,
40, 50, 60, 70, 80, 90, 100, 120, 140, 160,
180, 200, 300, 400, 500, 600, 700, 800, 900,1000};//30
void SetSpeed(unsigned char Speed)
{
SystemSpeed =SpeedCode[Speed];
}
void LEDShow(unsigned int LEDStatus)
{
P1 = ~(LEDStatus&0x00FF);
P0 = ~((LEDStatus>>8)&0x00FF);
}
void InitialCPU(void)
{
RunMode = 0x00;
TimerCount = 0;
SystemSpeedIndex = 10;
P1 = 0x00;
P0 = 0x00;
P2 = 0xFF;
P3 = 0x00;
Delay1ms(500);
P1 = 0xFF;
P0 = 0xFF;
P2 = 0xFF;
P3 = 0xFF;
SetSpeed(SystemSpeedIndex);
Display(RunMode);
}
//Mode 0
unsigned int LEDIndex = 0;
bit LEDDirection = 1,LEDFlag = 1;
void Mode_0(void)
{
LEDShow(0x0001<<LEDIndex);
LEDIndex = (LEDIndex+1)%16;
}
//Mode 1
void Mode_1(void)
{
LEDShow(0x8000>>LEDIndex);
LEDIndex = (LEDIndex+1)%16;
}
//Mode 2
void Mode_2(void)
{
if(LEDDirection)
LEDShow(0x0001<<LEDIndex);
else
LEDShow(0x8000>>LEDIndex);
if(LEDIndex==15)
LEDDirection = !LEDDirection;
LEDIndex = (LEDIndex+1)%16;
}
//Mode 3
void Mode_3(void)
{
if(LEDDirection)
LEDShow(~(0x0001<<LEDIndex));
else
LEDShow(~(0x8000>>LEDIndex));
if(LEDIndex==15)
LEDDirection = !LEDDirection;
LEDIndex = (LEDIndex+1)%16;
}
//Mode 4
void Mode_4(void)
{
if(LEDDirection)
{
if(LEDFlag)
LEDShow(0xFFFE<<LEDIndex);
else
LEDShow(~(0x7FFF>>LEDIndex));
}
else
{
if(LEDFlag)
LEDShow(0x7FFF>>LEDIndex);
else
LEDShow(~(0xFFFE<<LEDIndex));
}
if(LEDIndex==15)
{
LEDDirection = !LEDDirection;
if(LEDDirection) LEDFlag = !LEDFlag;
}
LEDIndex = (LEDIndex+1)%16;
}
//Mode 5
void Mode_5(void)
{
if(LEDDirection)
LEDShow(0x000F<<LEDIndex);
else
LEDShow(0xF000>>LEDIndex);
if(LEDIndex==15)
LEDDirection = !LEDDirection;
LEDIndex = (LEDIndex+1)%16;
}
//Mode 6
void Mode_6(void)
{
if(LEDDirection)
LEDShow(~(0x000F<<LEDIndex));
else
LEDShow(~(0xF000>>LEDIndex));
if(LEDIndex==15)
LEDDirection = !LEDDirection;
LEDIndex = (LEDIndex+1)%16;
}
//Mode 7
void Mode_7(void)
{
if(LEDDirection)
LEDShow(0x003F<<LEDIndex);
else
LEDShow(0xFC00>>LEDIndex);
if(LEDIndex==9)
LEDDirection = !LEDDirection;
LEDIndex = (LEDIndex+1)%10;
}
//Mode 8
void Mode_8(void)
{
LEDShow(++LEDIndex);
}
void TimerEventRun(void)
{
if(RunMode==0x00)
{
Mode_0();
}
else if(RunMode ==0x01)
{
Mode_1();
}
else if(RunMode ==0x02)
{
Mode_2();
}
else if(RunMode ==0x03)
{
Mode_3();
}
else if(RunMode ==0x04)
{
Mode_4();
}
else if(RunMode ==0x05)
{
Mode_5();
}
else if(RunMode ==0x06)
{
Mode_6();
}
else if(RunMode ==0x07)
{
Mode_7();
}
else if(RunMode ==0x08)
{
Mode_8();
}
}
void Timer2(void) interrupt 5 using 3
{
TF2 = 0; //中断标志清除( Timer2 必须软件清标志!)
if(++TimerCount>=SystemSpeed)
{
TimerCount = 0;
TimerEventRun();
}
}
unsigned char MusicIndex = 0;
void KeyDispose(unsigned char Key)
{
if(Key&0x01)
{
LEDDirection = 1;
LEDIndex = 0;
LEDFlag = 1;
RunMode = (RunMode+1)%9;
Display(RunMode);
}
if(Key&0x02)
{
if(SystemSpeedIndex>0)
{
--SystemSpeedIndex;
SetSpeed(SystemSpeedIndex);
}
else
{
LEDFlash(6);
}
}
if(Key&0x04)
{
if(SystemSpeedIndex<28)
{
++SystemSpeedIndex;
SetSpeed(SystemSpeedIndex);
}
else
{
LEDFlash(6);
}
}
}
//***********************************************************************************
main()
{
unsigned char Key;
InitialCPU();
InitialTimer2();
while(1)
{
Key = GetKey();
if(Key!=0x00)
{
KeyDispose(Key);
}
}
}
大富大贵7
- 粉丝: 396
- 资源: 8870
最新资源
- 半桥型流阀损耗解析计算模型 分析半桥型MMC损耗分为通态损耗和开关损耗,依据桥臂电流方向建立各器件的通态损耗模型;依据桥臂电压变化和电流方向分段建立器件的开关损耗模型 在MATLAB中进行仿真对比分
- 两极式单相光伏并网仿真 前极:Boost电路+扰动观察法 后极:桥式逆变+L型滤波+电压外环电流内环控制 并网电流和电网电压同频同相,单位功率因数并网,谐波失真率0.39%,并网效率高
- 两极式单相光伏并网仿真 前极:Boost电路+扰动观察法 后极:桥式逆变+L型滤波+电压外环电流内环控制 并网电流和电网电压同频同相,单位功率因数并网,谐波失真率0.39%,并网效率高 有配套vide
- Comsol等离子体仿真,Ar棒板流注放电 电子密度,电子温度,三维视图,电场强度等
- 考虑电动汽车接入的主动配电网优化调度
- 一种采用RRT*机械臂轨迹避障算法,然后采用三次B 样条函数对 所 规 划 路 径 进 行 拟 合 优 化 带有较为详细的注视 rrt路径规划结合机械臂仿真 基于matlab,6自由度,机械臂+rr
- 改进共生搜索算法(CSOS),测试函数效果如下,采用多种改进策略,与多种群智能算法在初始种群数量为30,最大运行次数为500,独立运行次数为30,对比效果如下
- 三电平逆变器运行在三相不平衡电网仿真 可选基于延时相消法(DSC)和双二阶广义积分器(DSOGI)的正负序分离控制 默认DSC 控制交流侧输出为对称三相电流波形,注入电网 电流谐波含量低 SVPW
- 永磁同步模型电流预测控制+滑模控制 1速度环采用滑模控制 滑模控制器采用新型趋近律与扰动观测器结合,提高系统鲁棒性和稳态特性 2电流环采用预测控制双矢量改进算法 含有对应学习文献
- jdk1.8版本,有window64和32位、linux版本
- 计算机网络技术领域《高级网络技术》实训指导书-网络规划与设备配置实训
- 注浆模型: 1.随机裂隙网络注浆模型,含ppt,考虑不同注浆压力下的注浆效果 2.基于两相达西定律、多孔介质及达西定律的注浆模型 3.基于层流和水平集的注浆扩散模型
- 智混合动力汽车SIMULINK整车模型,并联P2构型,基于规则的控制策略,模型运行及仿真无误
- 基于Python的学生信息管理系统的实现与应用
- MATLAB路径规划仿真 轨迹规划,船舶轨迹跟踪控制,数学模型基于两轮差速的小车模型,用PID环节对航向角进行控制,迫使小车走向目标,或用PID环节对航向角和距离进行控制,迫使小车走向目标 LQR 算
- MATLAB代码:电-气-热综合能源系统耦合优化调度 关键词:综合能源系统 优化调度 电气热耦合 参考文档:自编文档,非常细致详细,可联系我查阅 仿真平台:MATLAB YALMIP+cplex
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈