## Models
Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration
files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted
and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image
segmentation tasks.
These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like
instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms,
from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this
directory provides a great starting point for your custom model development needs.
To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've
selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full
details at the Ultralytics [Docs](https://docs.ultralytics.com), and if you need help or have any questions, feel free
to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
### Usage
Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
```
They may also be used directly in a Python environment, and accepts the same
[arguments](https://docs.ultralytics.com/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
# YOLO("model.pt") use pre-trained model if available
model.info() # display model information
model.train(data="coco128.yaml", epochs=100) # train the model
```
## Pre-trained Model Architectures
Ultralytics supports many model architectures. Visit [models](#) page to view detailed information and usage.
Any of these models can be used by loading their configs or pretrained checkpoints if available.
<b>What to add your model architecture?</b> [Here's](#) how you can contribute
### 1. YOLOv8
**About** - Cutting edge Detection, Segmentation and Classification models developed by Ultralytics. </br>
**Citation** -
Available Models:
- Detection - `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Instance Segmentation - `yolov8n-seg`, `yolov8s-seg`, `yolov8m-seg`, `yolov8l-seg`, `yolov8x-seg`
- Classification - `yolov8n-cls`, `yolov8s-cls`, `yolov8m-cls`, `yolov8l-cls`, `yolov8x-cls`
<details><summary>Performance</summary>
### Detection
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
### Segmentation
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
### Classification
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
经导师指导并认可通过的高分设计项目。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 <资源说明> 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设或者课设、作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96.5分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
资源推荐
资源详情
资源评论
收起资源包目录
基于Python+Yolov8手势特征识别+源代码+文档说明+结果截图.zip (146个子文件)
3.jpeg 90KB
3.jpeg 90KB
2.jpeg 75KB
2.jpeg 75KB
1.jpeg 66KB
1.jpeg 66KB
zidane.jpg 165KB
zidane.jpg 165KB
5.jpg 71KB
5.jpg 71KB
README.md 10KB
README.md 10KB
README.md 626B
README.md 626B
README.md 472B
README.md 472B
tasks.py 23KB
tasks.py 23KB
autobackend.py 22KB
autobackend.py 22KB
modules.py 18KB
modules.py 18KB
kalman_filter.py 18KB
kalman_filter.py 18KB
byte_tracker.py 12KB
byte_tracker.py 12KB
autoshape.py 12KB
autoshape.py 12KB
gmc.py 12KB
gmc.py 12KB
utils.py 9KB
utils.py 9KB
session.py 9KB
session.py 9KB
matching.py 7KB
matching.py 7KB
bot_sort.py 5KB
bot_sort.py 5KB
detect_predict.py 4KB
detect_predict.py 4KB
__init__.py 4KB
__init__.py 4KB
auth.py 2KB
auth.py 2KB
track.py 2KB
track.py 2KB
basetrack.py 936B
basetrack.py 936B
__init__.py 253B
__init__.py 253B
__init__.py 68B
__init__.py 68B
__init__.py 43B
__init__.py 43B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
modules.cpython-37.pyc 24KB
modules.cpython-37.pyc 24KB
modules.cpython-38.pyc 23KB
modules.cpython-38.pyc 23KB
tasks.cpython-38.pyc 21KB
tasks.cpython-38.pyc 21KB
tasks.cpython-37.pyc 21KB
tasks.cpython-37.pyc 21KB
autobackend.cpython-38.pyc 17KB
autobackend.cpython-38.pyc 17KB
autobackend.cpython-37.pyc 17KB
autobackend.cpython-37.pyc 17KB
utils.cpython-38.pyc 8KB
utils.cpython-38.pyc 8KB
utils.cpython-37.pyc 8KB
utils.cpython-37.pyc 8KB
session.cpython-37.pyc 7KB
session.cpython-37.pyc 7KB
session.cpython-38.pyc 7KB
session.cpython-38.pyc 7KB
__init__.cpython-37.pyc 3KB
__init__.cpython-37.pyc 3KB
__init__.cpython-38.pyc 3KB
__init__.cpython-38.pyc 3KB
auth.cpython-38.pyc 3KB
auth.cpython-38.pyc 3KB
auth.cpython-37.pyc 3KB
auth.cpython-37.pyc 3KB
__init__.cpython-38.pyc 401B
__init__.cpython-38.pyc 401B
__init__.cpython-37.pyc 399B
__init__.cpython-37.pyc 399B
__init__.cpython-38.pyc 211B
__init__.cpython-38.pyc 211B
__init__.cpython-37.pyc 209B
__init__.cpython-37.pyc 209B
yolov8x6.yaml 2KB
yolov8x6.yaml 2KB
yolov3-sppu.yaml 1KB
yolov3-sppu.yaml 1KB
yolov3u.yaml 1KB
yolov3u.yaml 1KB
共 146 条
- 1
- 2
资源评论
Scikit-learn
- 粉丝: 4157
- 资源: 1257
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- js-leetcode题解之158-read-n-characters-given-read4-ii-call
- js-leetcode题解之157-read-n-characters-given-read4.js
- js-leetcode题解之156-binary-tree-upside-down.js
- js-leetcode题解之155-min-stack.js
- js-leetcode题解之154-find-minimum-in-rotated-sorted-array-ii.js
- js-leetcode题解之153-find-minimum-in-rotated-sorted-array.js
- js-leetcode题解之152-maximum-product-subarray.js
- js-leetcode题解之151-reverse-words-in-a-string.js
- js-leetcode题解之150-evaluate-reverse-polish-notation.js
- js-leetcode题解之149-max-points-on-a-line.js
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功