## Models
Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration
files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted
and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image
segmentation tasks.
These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like
instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms,
from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this
directory provides a great starting point for your custom model development needs.
To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've
selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full
details at the Ultralytics [Docs](https://docs.ultralytics.com), and if you need help or have any questions, feel free
to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
### Usage
Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
```
They may also be used directly in a Python environment, and accepts the same
[arguments](https://docs.ultralytics.com/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
# YOLO("model.pt") use pre-trained model if available
model.info() # display model information
model.train(data="coco128.yaml", epochs=100) # train the model
```
## Pre-trained Model Architectures
Ultralytics supports many model architectures. Visit [models](#) page to view detailed information and usage.
Any of these models can be used by loading their configs or pretrained checkpoints if available.
<b>What to add your model architecture?</b> [Here's](#) how you can contribute
### 1. YOLOv8
**About** - Cutting edge Detection, Segmentation and Classification models developed by Ultralytics. </br>
**Citation** -
Available Models:
- Detection - `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Instance Segmentation - `yolov8n-seg`, `yolov8s-seg`, `yolov8m-seg`, `yolov8l-seg`, `yolov8x-seg`
- Classification - `yolov8n-cls`, `yolov8s-cls`, `yolov8m-cls`, `yolov8l-cls`, `yolov8x-cls`
<details><summary>Performance</summary>
### Detection
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
### Segmentation
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
### Classification
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
经导师指导并认可通过的高分设计项目。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 <资源说明> 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设或者课设、作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96.5分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
资源推荐
资源详情
资源评论




























收起资源包目录





































































































共 146 条
- 1
- 2
资源评论


Scikit-learn
- 粉丝: 5659
- 资源: 5060
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- GBT 24405.1-2009信息技术 服务管理 第1部分:规范
- 基于python的聊天机器人毕设源码(仅供参考).zip
- 图像拼接去拼缝的核函数实现
- 自然语言处理技术在金融资管领域的落地实践
- 毕业设计-聊天机器人项目源码(python).zip
- Java设计模式(刘伟).pdf
- IPV6子网划分工具,方便快捷的划分IPV6地址
- 嵌入式系统中的C与汇编混合编程技术详解及应用实例
- 《C++现代程序设计》项目.zip
- python学习笔记-第2章Python基础.pptx
- 大数据应用 课程报告 代码和录屏
- 从零构建RAG-基于提示连接检索增强生成与LLM的技术解析及应用场景
- 基于Java+SSM+Jsp的企业管理系统(源码-简易版)
- 无线通信领域公平半分布式资源分配方案在增强型OFDMA网络的应用与优化(可复现,有问题请联系博主)
- 阿里巴巴java开发手册.xdf
- qt加载xlsl 把内容读出来
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
