馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3>1. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 2: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data .. --upload_data </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
</details>
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
经导师指导并认可通过的高分设计项目。主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 <资源说明> 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设或者课设、作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96.5分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
资源推荐
资源详情
资源评论
收起资源包目录
基于Yolov5、centernet、unet算法的pyqt5界面,可实现图片目标检测和语义分割+源代码+文档说明+模型.zip (194个子文件)
Dockerfile 2KB
Dockerfile 2KB
Dockerfile 821B
Dockerfile 821B
.dockerignore 4KB
.dockerignore 4KB
.gitattributes 75B
.gitattributes 75B
.gitignore 4KB
.gitignore 4KB
tutorial.ipynb 48KB
tutorial.ipynb 48KB
LICENSE 34KB
LICENSE 34KB
YOLOV5.md 14KB
YOLOV5.md 14KB
README.md 10KB
README.md 10KB
CONTRIBUTING.md 5KB
CONTRIBUTING.md 5KB
README.md 2KB
README.md 2KB
README.md 2KB
README.md 2KB
datasets.py 43KB
datasets.py 43KB
Qt_yolo.py 36KB
Qt_yolo.py 36KB
utils_map.py 36KB
utils_map.py 36KB
general.py 33KB
general.py 33KB
train.py 31KB
train.py 31KB
wandb_utils.py 25KB
wandb_utils.py 25KB
centernet.py 25KB
centernet.py 25KB
main_qt.py 21KB
main_qt.py 21KB
tf.py 20KB
tf.py 20KB
plots.py 20KB
plots.py 20KB
common.py 20KB
common.py 20KB
unet.py 17KB
unet.py 17KB
val.py 17KB
val.py 17KB
export.py 16KB
export.py 16KB
main_qt_qthead.py 16KB
main_qt_qthead.py 16KB
predict_yolo.py 15KB
predict_yolo.py 15KB
yolo.py 14KB
yolo.py 14KB
torch_utils.py 14KB
torch_utils.py 14KB
metrics.py 13KB
metrics.py 13KB
augmentations.py 11KB
augmentations.py 11KB
callbacks_cen.py 11KB
callbacks_cen.py 11KB
dataloader.py 11KB
dataloader.py 11KB
utils_bbox.py 10KB
utils_bbox.py 10KB
loss.py 9KB
loss.py 9KB
predict_cen.py 9KB
predict_cen.py 9KB
predict_unet.py 9KB
predict_unet.py 9KB
resnet50.py 8KB
resnet50.py 8KB
utils_fit.py 8KB
utils_fit.py 8KB
autoanchor.py 7KB
autoanchor.py 7KB
__init__.py 6KB
__init__.py 6KB
hubconf.py 6KB
hubconf.py 6KB
resnet.py 6KB
resnet.py 6KB
downloads.py 6KB
downloads.py 6KB
centernet.py 5KB
centernet.py 5KB
unet_training.py 5KB
unet_training.py 5KB
centernet_training.py 5KB
centernet_training.py 5KB
experimental.py 4KB
experimental.py 4KB
hourglass.py 4KB
hourglass.py 4KB
共 194 条
- 1
- 2
资源评论
Scikit-learn
- 粉丝: 4140
- 资源: 1256
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 浙江省、市、区县及街镇可编辑的SVG图
- 2008-2023年上市公司企业(5.6万个样本)耐心资本数据与耐心资本所占比重数据(关系型债务和稳定型股权)-最新出炉.zip
- 哪吒喂养召唤游记投资c2c源码- 宠物养成类社交游戏源码
- 山西省、市、区县及街镇可编辑的SVG图
- 核电站运营和维护服务:预计到2030年将以3.35%的CAGR增长,达到266.5亿美元
- 山东省、市、区县及街镇可编辑的SVG图
- 2001-2023年上市公司企业大数据应用数据、大数据应用指数(6.1万个样本含原始数据+计算代码+计算结果)-最新出炉.zip
- 江苏省、市、区县及街镇可编辑的SVG图
- springboot005-Java沉浸式戏曲文化体验系统.zip
- Flask框架实现登录注册功能(前端+后端)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功