YOLOV3:You Only Look Once目标检测模型在Pytorch当中的实现
-
**2021年10月12日更新:**
**进行了大幅度的更新,对代码的模块进行修改,加了大量注释。**
## 目录
1. [性能情况 Performance](#性能情况)
2. [所需环境 Environment](#所需环境)
3. [文件下载 Download](#文件下载)
4. [训练步骤 How2train](#训练步骤)
5. [预测步骤 How2predict](#预测步骤)
6. [评估步骤 How2eval](#评估步骤)
7. [参考资料 Reference](#Reference)
## 性能情况
| 训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5:0.95 | mAP 0.5 |
| :-----: | :-----: | :------: | :------: | :------: | :-----: |
| COCO-Train2017 | [yolo_weights.pth](https://github.com/bubbliiiing/yolo3-pytorch/releases/download/v1.0/yolo_weights.pth) | COCO-Val2017 | 416x416 | 38.0 | 67.2
## 所需环境
torch == 1.2.0
详情请看requirements.txt,文件具有一定兼容性,已测试pytorch1.7和1.7.1可以正常运行。
## 文件下载
训练所需的yolo_weights.pth可以在百度云下载。
链接: https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw
提取码: appk
VOC数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分:
链接: https://pan.baidu.com/s/1YuBbBKxm2FGgTU5OfaeC5A
提取码: uack
## 训练步骤
### a、训练VOC07+12数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录**
2. 数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
3. 开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。
4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
### b、训练自己的数据集
1. 数据集的准备
**本文使用VOC格式进行训练,训练前需要自己制作好数据集,**
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
2. 数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
```python
cat
dog
...
```
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
3. 开始网络训练
**训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。**
**classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!**
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
4. 训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
**model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。**
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
## 预测步骤
### a、使用预训练权重
1. 下载完库后解压,在百度网盘下载yolo_weights.pth,放入model_data,运行predict.py,输入
```python
img/street.jpg
```
2. 在predict.py里面进行设置可以进行fps测试和video视频检测。
### b、使用自己训练的权重
1. 按照训练步骤训练。
2. 在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;**model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类**。
```python
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#--------------------------------------------------------------------------#
"model_path" : 'model_data/yolo_weights.pth',
"classes_path" : 'model_data/coco_classes.txt',
#---------------------------------------------------------------------#
# anchors_path代表先验框对应的txt文件,一般不修改。
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
#---------------------------------------------------------------------#
"anchors_path" : 'model_data/yolo_anchors.txt',
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
#---------------------------------------------------------------------#
# 输入图片的大小,必须为32的倍数。
#---------------------------------------------------------------------#
"input_shape" : [416, 416],
#---------------------------------------------------------------------#
# 只有得分大于置信度的预测框会被保留下来
#---------------------------------------------------------------------#
"confidence" : 0.5,
#---------------------------------------------------------------------#
# 非极大抑制所用到的nms_iou大小
#---------------------------------------------------------------------#
"nms_iou" : 0.3,
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : False,
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
"cuda" : True,
}
```
3. 运行predict.py,输入
```python
img/street.jpg
```
4. 在predict.py里面进行设置可以进行fps测试和video视频检测。
## 评估步骤
### a、评估VOC07+12的测试集
1. 本文使用VOC格式进行评估。VOC07+12已经划分好了测试集,无需利用voc_annotation.py生成ImageSets文件夹下的txt。
2. 在yolo.py里面修改model_path以及classes_path。**model_path指向训练好的权值文件,在logs文件夹里。classes_path指向检测类别所对应的txt。**
3. 运行get_map.py即可获得评估结果,评估结果会保存在map_out文件夹中。
### b、评估自己的数据集
1. 本文使用VOC格式进行评估。
2. 如果在训练前已经运行过voc_annotation.py文件,代码会自动将数据集划分成训练集、验证集和测试集。如果想要修改测试集的比例,可以修改voc_annotation.py文件下的trainval_percent。trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1。train_percent用于指定(训练集+验证�
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于深度学习的戴口罩人脸识别python源代码+文档说明+模型+数据集.zip 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数据集 权值文件名称 测试数据集 输入图片大小 mAP 0.5:0.95 mAP 0.5 COCO-Train2017 yolo_weights.pth COCO-Val2017 416x416 38.0 67.2 所需环境 torch == 1.2.0 详情请看requirements.txt,文件具有一定兼容性,已测试pytorch1.7和1.7.1可以正常运行。 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设或者课设、作业,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96.5分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信
资源推荐
资源详情
资源评论
收起资源包目录
基于深度学习的戴口罩人脸识别python源代码+文档说明+模型+数据集.zip (37个子文件)
voc_annotation.py 5KB
LICENSE 1KB
predict.py 7KB
utils
utils.py 2KB
__init__.py 1B
utils_bbox.py 13KB
utils_map.py 36KB
dataloader.py 6KB
utils_fit.py 4KB
callbacks.py 2KB
__pycache__
utils_bbox.cpython-38.pyc 5KB
utils.cpython-38.pyc 2KB
__init__.cpython-38.pyc 176B
nets
__init__.py 1B
darknet.py 4KB
__pycache__
darknet.cpython-38.pyc 3KB
yolo.cpython-38.pyc 2KB
__init__.cpython-38.pyc 175B
yolo_training.py 20KB
yolo.py 5KB
model_data
yolo_anchors.txt 75B
simhei.ttf 9.3MB
coco_classes.txt 705B
voc_classes.txt 153B
常见问题汇总.md 36KB
img
street.jpg 437KB
VOCdevkit
VOC2007
ImageSets
Main
README.md 24B
Annotations
README.md 18B
JPEGImages
README.md 18B
summary.py 504B
requirements.txt 150B
get_map.py 6KB
logs
README.md 30B
train.py 13KB
__pycache__
yolo.cpython-38.pyc 6KB
README.md 8KB
yolo.py 15KB
共 37 条
- 1
资源评论
Scikit-learn
- 粉丝: 4302
- 资源: 1868
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功