没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
“Finding Feasible Routes with Reinforcement Learning Using Macro-Level Traffic Measurements” 是一篇探讨如何利用强化学习和宏观交通测量数据来寻找可行路径的研究论文。以下是这篇论文的概述: 背景与动机: 路径规划问题:在智能交通系统(ITS)和导航应用中,寻找车辆从起点到目的地的最优路径是一个关键问题。传统的路径规划方法通常依赖于实时交通数据或预定义的规则,但这些方法可能难以应对复杂的交通状况或大规模网络。 宏观交通测量:宏观层面的交通数据,例如路段的平均车速、交通流量、拥堵指数等,提供了整体交通网络的状态。这些数据可以用于估计路况和预测拥堵,但如何有效利用这些信息来指导路径选择是一个挑战。 强化学习的优势:强化学习(RL)是一种基于试错的机器学习方法,能够通过不断交互来学习最优策略。将强化学习应用于路径规划,可以动态适应变化的交通状况,并通过经验逐步优化路径选择。 研究内容: 问题建模:论文将路径规划问题建模为一个马尔可夫决策过程(MDP),其中状态表示交通网络的当前状态。
资源推荐
资源详情
资源评论
Finding Feasible Routes with Reinforcement
Learning Using Macro-Level Traffic Measurements
Mustafa Can Ozkan
1
#
SpaceTimeLab, University College London, UK
Tao Cheng #
SpaceTimeLab, University College London, UK
Abstract
The quest for identifying feasible routes holds immense significance in the realm of transportation,
spanning a diverse range of applications, from logistics and emergency systems to taxis and public
transport services. This research area offers multifaceted benefits, including optimising traffic
management, maximising traffic flow, and reducing carbon emissions and fuel consumption. Extensive
studies have been conducted to address this critical issue, with a primary focus on finding the
shortest paths, while some of them incorporate various traffic conditions such as waiting times at
traffic lights and traffic speeds on road segments. In this study, we direct our attention towards
historical data sets that encapsulate individuals’ route preferences, assuming they encompass all
traffic conditions, real-time decisions and topological features. We acknowledge that the prevailing
preferences during the recorded period serve as a guide for feasible routes. The study’s noteworthy
contribution lies in our departure from analysing individual preferences and trajectory information,
instead focusing solely on macro-level measurements of each road segment, such as traffic flow or
traffic speed. These types of macro-level measurements are easier to collect compared to individual
data sets. We propose an algorithm based on Q-learning, employing traffic measurements within a
road network as positive attractive rewards for an agent. In short, observations from macro-level
decisions will help us to determine optimal routes between any two points. Preliminary results
demonstrate the agent’s ability to accurately identify the most feasible routes within a short training
period.
2012 ACM Subject Classification Computing methodologies → Q-learning
Keywords and phrases routing, reinforcement learning, q-learning, data mining, macro-level patterns
Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.58
Category Short Paper
1 Introduction
The topic of finding routes between two points has been studied in many different fields, such
as computer systems, transportation systems and communication networks. The majority
of research concentrates on route optimisation, seeking to reduce travel time or distance
or to maximise operational efficiencies, such as the maximum number of taxi customers
or the maximum storage of a delivery truck. These studies, which employ mathematical
optimisation techniques, include optimisation constraints such as the truck’s maximum cargo
capacity and minimise/maximise the objective function of the main aim, such as travel time.
They often take into account the average travel time on a route depending on the length of
the road, the timing of the traffic lights, or occasionally the traffic situation, including actual
or historical traffic flow and speeds. They also factor in user preferences from surveys or GPS
1
corresponding author
© Mustafa Can Ozkan and Tao Cheng;
licensed under Creative Commons License CC-BY 4.0
12th International Conference on Geographic Information Science (GIScience 2023).
Editors: Roger Beecham, Jed A. Long, Dianna Smith, Qunshan Zhao, and Sarah Wise; Article No. 58; pp. 58:1–58:6
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
资源评论
gllgool
- 粉丝: 183
- 资源: 7
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 获奖竞赛项目-水下管道智能巡检赛项潜艇机器人控制(含全部参赛源码及资料).zip
- 中国机器人及人工智能大赛-智慧药房组参赛获奖作品(含全部参赛源码及资料).zip
- 基于深度学习与Neo4j的军事武器知识图谱网页应用原型系统(含源码+项目说明).zip
- 电子学习资料设计作品全资料基于51单片机的电子万年历的设计资料
- python语言huochepiao爬虫程序代码QZQ.txt
- python语言tp爬虫程序代码ZQ.txt
- 电子学习资料设计作品全资料基于51单片机的数字频率计资料
- comsol激光抛光、熔覆熔池流动,考虑马兰戈尼对流(考虑活性元素,改变表面张力系数),表面张力、蒸汽反冲压力、重力、浮力
- 电子学习资料设计作品全资料基于AT89S52单片机和DS1302的电子万年历设计资料
- 直流无刷电机BLDC控制,转速环采用ADRC自抗扰控制器,电机反电势为梯形波,采用矢量控制,动态性能好 图一为三相梯形波相电流 图二为梯形波反电势 图三为转速波形 图四为三相开关信号 图五为仿真框图
- 电子学习资料设计作品全资料基于AVR单片机的汽车空调控制系统资料
- npm版本管理,nvm
- SwiftUI 基础课程第五课:@Binding、NavigationLink、以及dismiss、SwiftUI闭包回调
- comsol多物理场: 热流固耦合 压缩空气 应力场 温度场 渗流场
- 电子学习资料设计作品全资料基于AVR及无线收发模块的脉搏监测系统设计资料
- Java毕设项目:基于spring+mybatis+maven+mysql实现的端游账号游戏账号销售管理系统【含源码+数据库+毕业论文】
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功