## Task 2
### Task 2.1
CIFAR10
此处同样使用了示例中的模板协助学习
```yaml
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import logging
from models import *
from utils import progress_bar
import nni
_logger = logging.getLogger("cifar10_pytorch_automl")
trainloader = None
testloader = None
net = None
criterion = None
optimizer = None
device = 'cuda' if torch.cuda.is_available() else 'cpu'
#此处调用了CUDA作为运算 如无CUDA设备则使用CPU
#不过感觉CPU运行还是慢不少的?
best_acc = 0.0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
def prepare(args):
global trainloader
global testloader
global net
global criterion
global optimizer
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
#classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
#输入模型
print('==> Building model..')
if args['model'] == 'vgg':
net = VGG('VGG19')
if args['model'] == 'resnet18':
net = ResNet18()
if args['model'] == 'googlenet':
net = GoogLeNet()
if args['model'] == 'densenet121':
net = DenseNet121()
if args['model'] == 'mobilenet':
net = MobileNet()
if args['model'] == 'dpn92':
net = DPN92()
if args['model'] == 'shufflenetg2':
net = ShuffleNetG2()
if args['model'] == 'senet18':
net = SENet18()
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(net.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)
if args['optimizer'] == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)
if args['optimizer'] == 'Adadelta':
optimizer = optim.Adadelta(net.parameters(), lr=args['lr'])
if args['optimizer'] == 'Adagrad':
optimizer = optim.Adagrad(net.parameters(), lr=args['lr'])
if args['optimizer'] == 'Adam':
optimizer = optim.Adam(net.parameters(), lr=args['lr'])
if args['optimizer'] == 'Adamax':
optimizer = optim.Adam(net.parameters(), lr=args['lr'])
# Training
def train(epoch, batches=-1):
global trainloader
global testloader
global net
global criterion
global optimizer
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
if batches > 0 and (batch_idx+1) >= batches:
return
def test(epoch):
global best_acc
global trainloader
global testloader
global net
global criterion
global optimizer
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
return acc, best_acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=200)
# Maximum mini-batches per epoch, for code testing purpose
parser.add_argument("--batches", type=int, default=-1)
args, _ = parser.parse_known_args()
try:
RCV_CONFIG = nni.get_next_parameter()
#RCV_CONFIG = {'lr': 0.1, 'optimizer': 'Adam', 'model':'senet18'}
_logger.debug(RCV_CONFIG)
prepare(RCV_CONFIG)
acc = 0.0
best_acc = 0.0
for epoch in range(start_epoch, start_epoch+args.epochs):
train(epoch, args.batches)
acc, best_acc = test(epoch)
nni.report_intermediate_result(acc)
nni.report_final_result(best_acc)
except Exception as exception:
_logger.exception(exception)
raise
```
### Task 2.2