# car_moto_tracking_Jetson_Nano_Yolov8_TensorRT
Detect, track and count cars and motorcycles using yolov8 and TensorRT on Jetson Nano
To deploy this work on a Jetson Nano, you should do it in two steps:
## 1- On your PC:
### Install the required packages:
python -m pip install -r requirements.txt
### Create a folder for the dataset:
mkdir datasets
cd datasets
mkdir Train
mkdir Validation
### Copy your dataset:
Copy your train dataset (images + .txt files) into datasets/Train
cp -r path_to_your_train_dataset/. ${root}/train/datasets/Train
Copy your validation dataset (images + .txt files) into datasets/Validation
cp -r path_to_your_validation_dataset/. ${root}/train/datasets/Validation
If you have more than car and motorcycle classes, modify the data.yaml to add the other classes.
### Train the yolov8n model:
python main.py
When the training is finished, your custom yolov8n model will be saved in
${root}/train/runs/detect/train/weights/best.pt
### 1-6- Push your custom model to GitHub:
git add runs/detect/train/weights/best.onnx
git commit -am "Add the trained yolov8n model"
git push
### Remark:
If you want to use an already pretrained model:
python export_onnx.py --weights path_to_your_pretrained_model
git add path_to_the_onnx_model
git commit -am "Add the trained yolov8n model"
git push
## 2- On the Jetson Nano:
### 2-1- Clone this repo on the Jetson Nano:
git clone "URL to your own repository"
cd "repository_name"
export root=${PWD}
### 2-2- Export the engine from the onnx model
/usr/src/tensorrt/bin/trtexec \
--onnx=train/runs/detect/train/weights/best.onnx \
--saveEngine=best.engine
After executing the above command, you will get an engine named best.engine .
### 2-3- For Detection:
cd ${root}/detect
mkdir build
cd build
cmake ..
make
cd ${root}
#### 2-3-1- Launch Detection:
for video:
${root}/detect/build/yolov8_detect ${root}/best.engine video ${root}/src/test.mp4 1 show
#### Description of all arguments
- 1st argument : path to the maked file
- 2nd argument : path to the engine
- 3rd argument : video for saved video
- 4rth argument: path to video file
- 5th argument : if inference capacity of the Jetson is more then 30 fps, put 1, otherwise put 2, 3, 4 depending on the inference capacity of the Jetson
- 6th argument : show or save
for camera:
${root}/detect/build/yolov8_detect ${root}/best.engine camera 1 show
#### Description of all arguments
- 1st argument : path to the maked file
- 2nd argument : path to the engine
- 3rd argument : camera for using embedded camera
- 4rth argument: if inference capacity of the Jetson is more then 30 fps, put 1, otherwise put 2, 3, 4 depending on the inference capacity of the Jetson
- 5th argument : show or save
### 2-4- For Tracking and Counting:
cd ${root}/track_count
mkdir build
cd build
cmake ..
make
cd ${root}
#### 2-4-1- Launch Tracking and Counting:
If you want to count only in one direction, put 1 as 7th argument. Otherwise, for 2 directions counting, put 2 as 7th argument.
Before displaying the processed video, the first frame of the video will be displayed. You should click on this frame to indicate the position of the line(s). For one direction counting, click twice and for 2 directions counting, click four time.
for video:
${root}/track_count/build/yolov8_track_count ${root}/best.engine video ${root}/src/test.mp4 1 show
#### Description of all arguments
- 1st argument : path to the maked file
- 2nd argument : path to the engine
- 3rd argument : video for saved video
- 4rth argument: path to video file
- 5th argument : if inference capacity of the Jetson is more then 30 fps, put 1, otherwise put 2, 3, 4 depending on the inference capacity of the Jetson
- 6th argument : show or save
for camera:
${root}/track_count/build/yolov8_track_count ${root}/best.engine camera 1 show
#### Description of all arguments
- 1st argument : path to the maked file
- 2nd argument : path to the engine
- 3rd argument : camera for using embedded camera
- 4rth argument: if inference capacity of the Jetson is more then 30 fps, put 1, otherwise put 2, 3, 4 depending on the inference capacity of the Jetson
- 5th argument : show or save
#### Remark:
If you are using the Jetson with SSH, you can not see the first frame of the video to draw the line.
With SSH connection, follow these steps:
1- Add argument to the command line with ssh
for video:
${root}/track_count/build/yolov8_track_count ${root}/best.engine video ${root}/src/test.mp4 1 show ssh
for camera
${root}/track_count/build/yolov8_track_count ${root}/best.engine camera 1 show ssh
2- The first frame of the video will be saved
3- Copie this frame to you PC via SSH (in PC's terminal):
scp jetson_name@jetson_server:path_to_frame_in_jetson/frame_for_line.jpg ${root}/utils/frame_for_line.jpg
4- On your PC, launch the python script draw_line.py to draw the line and get the points.
python3 ${root}/utils/draw_line.py
5- Give the points value to Jetson in the Jetson's terminal.

Mopes__
- 粉丝: 2998
- 资源: 648
最新资源
- 【毕业设计】基于Python的Django-html基于搜索的目标站点内容监测系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】基于Python的Django-html基于网易新闻+评论的舆情热点分析平台源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】基于Python的Django-html基于图像的信息隐藏技术研究源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】基于Python的Django-html基于深度学习的车牌识别系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】基于Python的Django-html基于深度学习屋内烟雾检测方法源码(完整前后端+mysql+说明文档+LW+PPT).zip
- qt6.8.2 msvc支持heif/heic格式图片插件qheif.dll,拷贝即用
- 人工智能+声纹识别+UI接口+点击快速语音比对
- DeepSeek+Dify本地部署知识库
- 【毕业设计】基于Python的Django-html基于深度学习的身份证识别考勤系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】基于Python的Django-html基于深度学习的安全帽佩戴检测系统源码(完整前后端+mysql+说明文档+LW+PPT).zip
- 【毕业设计】基于Python的Django-html基于深度学习的聊天机器人设计源码(完整前后端+mysql+说明文档+LW+PPT).zip
- COMSOL BIC本征态计算通用算法:直观出图,支持物理研究,适用于2019PRL标准,COMSOL BIC本征态计算通用算法:直观出图,适用于2019PRL研究,comsol BIC本征态计算,支
- 《ArkTS鸿蒙应用开发入门到实战》宣传视频!
- alpine docker镜像
- ESP8266-3.1.2 for Arduino
- nginx docker镜像
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


