# Hands-On Transfer Learning with Python
### Implement advanced deep learning and neural network models using Tensorflow and Keras
With the world moving towards digitalization and automation, as a technologist/programmer it is important to keep oneself updated and learn how to leverage these tools and techniques. [*__"Hands-On Transfer Learning with Python"__*](https://github.com/dipanjanS/hands-on-transfer-learning-with-python#contents), is an attempt to help practitioners get acquainted with and equipped to use these advancements in their respective domains. This book is structured broadly into three sections:
+ Deep learning foundations
+ Essentials of transfer learning
+ Transfer learning case studies
This repository contains all the code, notebooks and examples used in this book. We will also be adding bonus content here from time to time. So keep watching this space!
## Get the book
<table style="width:100%" >
<tr>
<td>
<a target="_blank" href="https://www.packtpub.com/big-data-and-business-intelligence/hands-transfer-learning-python">
<img src="./media/banners/packt_logo.png" alt="packt" align="left"/>
</a>
</td>
<td>
<a target="_blank" href="https://www.safaribooksonline.com/library/view/hands-on-transfer-learning/9781788831307">
<img src="./media/banners/safari_logo.png" alt="safari" align="left"/>
</a>
</td>
<td>
<a target="_blank" href="https://www.amazon.com/Hands-Transfer-Learning-Python-TensorFlow-ebook/dp/B07CB455BF/ref=zg_bsnr_16977170011_71?_encoding=UTF8&psc=1&refRID=3VS8TYPZGN776BFEZJVG">
<img src="./media/banners/amazon_logo.png" alt="amazon" align="left"/>
</a>
</td>
</tr>
</table>
## About the book
<a target="_blank" href="#">
<img src="./media/banners/front_cover.png" alt="Book Cover" width="350" align="left"/>
</a>
Transfer learning is a machine learning (ML) technique where knowledge gained during the training of one set of ML problems can be used to train other similar types of problems. The purpose of this book is two-fold. We focus on detailed coverage of deep learning and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus will be on real-world examples and research problems using [`tensorflow`](https://www.tensorflow.org/), [`keras`](https://keras.io/), and the Python ecosystem with hands-on examples.
The book starts with core essential concepts of ML and deep learning, followed by some depictions and coverage of important deep learning architectures, such as CNNs, DNNs, RNNs, LSTMs, and capsule networks. Our focus then shifts to transfer learning concepts and pretrained state of the art networks such as VGG, Inception, and ResNet. We also learn how these systems can be leveraged to improve performance of our deep learning models. Finally, we focus on a multitude of real-world case studies and problems in areas such as computer vision, audio analysis, and natural language processing (NLP). By the end of this book, you will be all ready to implement both deep learning and transfer learning principles in your own systems.
<div style='font-size:0.5em;'><sup>
Edition: 1st   Pages: 438   Language: English<br/>
Book Title: Hands-On Transfer Learning with Python   Publisher: Packt<br/>
Copyright: Sarkar, Bali & Ghosh   ISBN 13: 9781788831307<br/>
</div>
<br/>
## [Contents](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks#book-contents)
- [__Part I: Deep learning foundations__](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks#part-i-deep-learning-foundations)
- [Chapter 1: Machine Learning Fundamentals Basics](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch01%20-%20Machine%20Learning%20Fundamentals)
- [Chapter 2: Deep Learning Essentials Basics](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch02%20-%20Deep%20Learning%20Essentials)
- Chapter 3: Understanding Deep Learning Architectures Basics
- [__Part II: Essentials of transfer learning__](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks#part-ii-essentials-of-transfer-learning)
- Chapter 4: Transfer Learning Fundamentals Basics
- [Chapter 5: Unleashing the Power of Transfer Learning](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch05%20-%20Unleash%20the%20Power%20of%20Transfer%20Learning)
- [__Part III: Transfer learning case studies__](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks#part-iii-transfer-learning-case-studies)
- [Chapter 6: Image Recognition and Classification](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch06%20-%20Image%20Recognition%20and%20Classification)
- [Chapter 7: Text Document Categorization](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch07%20-%20Text%20Document%20Categorization)
- [Chapter 8: Audio Identification and Classification](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch08%20-%20Audio%20Identification%20and%20Categorization)
- [Chapter 9: Deep Dream](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch09%20-%20Deep%20Dream)
- [Chapter 10: Style Transfer](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch10%20-%20Neural%20Style%20Transfer)
- [Chapter 11: Automated Image Caption Generator](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch11%20-%20Automated%20Image%20Caption%20Generator)
- [Chapter 12: Image Colorization](https://github.com/dipanjanS/hands-on-transfer-learning-with-python/tree/master/notebooks/Ch12%20-%20Image%20Colorization)
## Key Features:
+ Build deep learning models with transfer learning principles in Python
+ Implement transfer learning to solve real-world research problems
+ Perform complex operations such as image captioning neural style transfer
## What You Will Learn:
+ Set up your own DL environment with graphics processing unit (GPU) and Cloud support
+ Delve into transfer learning principles with ML and DL models
+ Explore various DL architectures, including CNN, LSTM, and capsule networks
+ Learn about data and network representation and loss functions
+ Get to grips with models and strategies in transfer learning
+ Walk through potential challenges in building complex transfer learning models from scratch
+ Explore real-world research problems related to computer vision and audio analysis
+ Understand how transfer learning can be leveraged in NLP
<br/>
## Audience
Hands-On Transfer Learning with Python is for data scientists, ML engineers, analysts, and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems.
__Basic proficiency in ML and Python is required.__
## Acknowledgements
TBA
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
D:\Edgedownload\BaiduNetdisk\BaiduNetdiskDownload\迁移学习实战全英文书籍【CSDN]\hands-on-transfer-learning-with-python-master\notebooks\ 的索引 [上级目录] 名称 大小 修改日期 Ch01 - Machine Learning Fundamentals/ 2018/9/28 12:19:21 Ch02 - Deep Learning Essentials/ 2018/9/28 12:19:21 Ch05 - Unleash the Power of Transfer Learning/ 2018/9/28 12:19:21 Ch06 - Image Recognition and Classification/ 2018/9/28 12:19:21 Ch07 - Text Document Categorization/ 2018/9/28 12:19:21 Ch08 - Audio Identification and Categorization/ 2018
资源推荐
资源详情
资源评论
收起资源包目录
迁移学习实战全英文书籍CSDN.zip (113个子文件)
battles.csv 8KB
.gitignore 1KB
desktop.ini 132B
Style Transfer Results HD.ipynb 9.13MB
Model Performance Evaluations.ipynb 7.5MB
Model Test.ipynb 5.28MB
Style Transfer Model.ipynb 3.79MB
Exploratory Analysis Sound Data.ipynb 3.26MB
colornet_vgg16.ipynb 2.79MB
Dog_Breed_Transfer_Learning_Classifier.ipynb 2.11MB
Dog_Breed_EDA.ipynb 1.48MB
Prediction Pipeline.ipynb 962KB
game_of_thrones_eda.ipynb 784KB
CNN with Image Augmentation.ipynb 630KB
CIFAR10_CNN_Classifier.ipynb 481KB
NNBasics.ipynb 327KB
Feature Engineering.ipynb 302KB
CIFAR10_VGG16_Transfer_Learning_Classifier.ipynb 293KB
CNN with Transfer Learning.ipynb 248KB
Basic CNN Model.ipynb 189KB
feature_engineering_numerical_and_categorical_data.ipynb 94KB
Model Train.ipynb 78KB
Modeling.ipynb 64KB
IMDB_word2Vec.ipynb 45KB
Deep Dream Final.ipynb 29KB
feature_engineering_text_data.ipynb 27KB
Image feature extraction.ipynb 16KB
20_newsgrp_cnn_model.ipynb 10KB
Text_Summarization_IMDB.ipynb 5KB
Datasets Builder.ipynb 4KB
7ed962e763ce17c16df44cfa96dfd047.jpeg 205KB
5a2987b714c15456c0e038dabcf426e2.jpeg 200KB
8587f219580ae6f207490ff02f853df3.jpeg 188KB
cc3d9a6d928111e9861bebd43b475f63.jpeg 178KB
62e2af22b63e4674759d811aab1b6679.jpeg 171KB
5a0728978e9a5180076ec357bc28c92e.jpeg 169KB
0dc3e95a9954c5d50e5ddac5bf774e09.jpeg 169KB
0311abf53d60705cc9605bc46589b0d6.jpeg 168KB
58fd582ca79217457b0d8807a6302824.jpeg 165KB
ae69df2e9995ee238f5ea93090a3981d.jpeg 156KB
328e41c2fbc194b0f8900007a61c6d4a.jpeg 151KB
6d905979f4788767939883c0f8b4250b.jpeg 150KB
b208394092522e1a74b7ce9d8b558022.jpeg 150KB
cbb19bd188a96067f478c0a9b1559844.jpeg 148KB
e2b2bcccdba6d1293a7e89ef3d6df112.jpeg 146KB
6a47074ff275acedfa82ffbc9025b703.jpeg 141KB
cb2af8fbb9cd6d48eb1009c68349cb1e.jpeg 137KB
e72e923ffc4d51faf1a99d09bd59896a.jpeg 137KB
156979415efa5edc3420558a884b3536.jpeg 133KB
1261ea1079ab97b732812e328c3a5c48.jpeg 125KB
fe79cd9cda63a4af3924d2718b7e775a.jpeg 125KB
663b353d812988e7635ce6709414d6aa.jpeg 123KB
232a6c59d6965f9f466dd2390829a69a.jpeg 121KB
07c4859f54fb3184aebca9a7b3aa5317.jpeg 120KB
ff20b4d22ed3e1e8829768201d110f53.jpeg 120KB
83f948c28622623c088d6d7cc0d02b18.jpeg 110KB
1b99b787ef471af6c652e01737d883a6.jpeg 109KB
060df5a829e988f6b5de7c089dc3c05d.jpeg 107KB
bb9d9ece213507e6c45852633c6e61e8.jpeg 104KB
24e8e4a8b32e2ccbc1e7b2798cb8fcd8.jpeg 103KB
56eb7309c5bc5cb9629b2db830a1b025.jpeg 103KB
7a24ba5bfdbb9602f78197e3e103feb4.jpeg 101KB
92e06aafe0ca084825921deb2b4c5c55.jpeg 93KB
3b8640a78d79be87f927a63174902346.jpeg 92KB
2fbb562e61f6460cf9820940d61b7001.jpeg 85KB
097ec13396d0593ddd00e360b7375b8f.jpeg 84KB
62f4423f981dda4a508781f4845b0c09.jpeg 75KB
2374de3c74aee73fd495c57eee8e4ab0.jpeg 75KB
6b85128b02f95c628c85437b1eef38a4.jpeg 73KB
8afc970abdab28220ad7a0be25457a2e.jpeg 68KB
529b4fb2e62f249a87b5908debaf73e7.jpeg 51KB
cba1776f1d7129f9f83a4d9fc4b89039.jpeg 46KB
15f6abb6f801e04c880008f39a0ba558.jpeg 16KB
1cc416b4897eca408ad396a09ad000cd.jpeg 13KB
81491e7159595d373c027e9c337eecfa.jpeg 6KB
mccowan_mountain_orig.jpg 352KB
DSC09296.jpg 239KB
0fc12a365adfcbb603e298b10149632a.jpg 131KB
blue-sky.jpg 56KB
labrador.jpg 48KB
LICENSE 11KB
README.md 7KB
README.md 7KB
Hands-On Transfer Learning with Python.pdf 32.63MB
front_cover.png 887KB
colorspaces.png 294KB
colorization_task.png 285KB
colornet_architecture.png 235KB
safari_logo.png 8KB
packt_logo.png 6KB
amazon_logo.png 6KB
dog_breed_transfer_learning_classifier.py 10KB
cnn_document_model.py 10KB
game_of_thrones_eda.py 10KB
model_evaluation_utils.py 8KB
model_evaluation_utils.py 8KB
transfer_learning_imdb.py 6KB
feature_engineering_numerical_and_categorical_data.py 5KB
cnn_utils.py 5KB
imdb_model.py 4KB
共 113 条
- 1
- 2
资源评论
电气那些事儿
- 粉丝: 826
- 资源: 40
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- C#ASP.NET医院管理系统源码数据库 SQL2008源码类型 WinForm
- 犀牛(Rhino)批量导出STL格式文件
- 在Windows10/11安装免费的HEVC解码插件
- remote_latest.apk
- intel dx79 最新bios intel-six7910j-86A-0424-bi.zip
- 在.NET 6中使用Serilog收集日志
- 单开线程处理串口通信 qt
- intel dx58so2 最新bios sox5820j.86a.0920.bi.zxip
- C#大型体检系统源码 PEIS医院体检管理系统源码数据库 SQL2008源码类型 WinForm
- intel dh87mc 主板最新bios 0164版
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功