程序员面试题精选 (01)-把二元查找树转变成排序的双向链表
题目: 输入一棵二元查找树, 将该二元查找树转换成一个排序的双向链表。 要求不能创
建任何新的结点,只调整指针的指向。
比如将二元查找树
10
/ \
6 14
/ \ / \
4 8 12 16
转换成双向链表
4=6=8=10=12=14=16 。
分析: 本题是微软的面试题。 很多与树相关的题目都是用递归的思路来解决, 本题也不
例外。下面我们用两种不同的递归思路来分析。
思路一: 当我们到达某一结点准备调整以该结点为根结点的子树时, 先调整其左子树将
左子树转换成一个排好序的左子链表, 再调整其右子树转换右子链表。 最近链接左子链表的
最右结点(左子树的最大结点) 、当前结点和右子链表的最左结点(右子树的最小结点) 。从
树的根结点开始递归调整所有结点。
思路二:我们可以中序遍历整棵树。 按照这个方式遍历树,比较小的结点先访问。 如果
我们每访问一个结点, 假设之前访问过的结点已经调整成一个排序双向链表, 我们再把调整
当前结点的指针将其链接到链表的末尾。 当所有结点都访问过之后, 整棵树也就转换成一个
排序双向链表了。
参考代码:
首先我们定义二元查找树结点的数据结构如下:
struct BSTreeNode // a node in the binary search tree
{
int m_nValue; // value of node
BSTreeNode *m_pLeft; // left child of node
BSTreeNode *m_pRight; // right child of node
};
思路一对应的代码:
///////////////////////////////////////////////////////////////////////
// Covert a sub binary-search-tree into a sorted double-linked list
// Input: pNode - the head of the sub tree
// asRight - whether pNode is the right child of its parent
// Output: if asRight is true, return the least node in the sub-tree
// else return the greatest node in the sub-tree
///////////////////////////////////////////////////////////////////////
BSTreeNode* ConvertNode(BSTreeNode* pNode, bool asRight)
{
if(!pNode)
return NULL;
BSTreeNode *pLeft = NULL;
BSTreeNode *pRight = NULL;