# RLCard: A Toolkit for Reinforcement Learning in Card Games
<img width="500" src="https://dczha.com/files/rlcard/logo.jpg" alt="Logo" />
[![Testing](https://github.com/datamllab/rlcard/actions/workflows/python-package.yml/badge.svg)](https://github.com/datamllab/rlcard/actions/workflows/python-package.yml)
[![PyPI version](https://badge.fury.io/py/rlcard.svg)](https://badge.fury.io/py/rlcard)
[![Coverage Status](https://coveralls.io/repos/github/datamllab/rlcard/badge.svg)](https://coveralls.io/github/datamllab/rlcard?branch=master)
[![Downloads](https://pepy.tech/badge/rlcard)](https://pepy.tech/project/rlcard)
[![Downloads](https://pepy.tech/badge/rlcard/month)](https://pepy.tech/project/rlcard)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[中文文档](README.zh-CN.md)
RLCard is a toolkit for Reinforcement Learning (RL) in card games. It supports multiple card environments with easy-to-use interfaces for implementing various reinforcement learning and searching algorithms. The goal of RLCard is to bridge reinforcement learning and imperfect information games. RLCard is developed by [DATA Lab](http://faculty.cs.tamu.edu/xiahu/) at Rice and Texas A&M University, and community contributors.
* Official Website: [https://www.rlcard.org](https://www.rlcard.org)
* Tutorial in Jupyter Notebook: [https://github.com/datamllab/rlcard-tutorial](https://github.com/datamllab/rlcard-tutorial)
* Paper: [https://arxiv.org/abs/1910.04376](https://arxiv.org/abs/1910.04376)
* Video: [YouTube](https://youtu.be/krK2jmSdKZc)
* GUI: [RLCard-Showdown](https://github.com/datamllab/rlcard-showdown)
* Dou Dizhu Demo: [Demo](https://douzero.org/)
* Resources: [Awesome-Game-AI](https://github.com/datamllab/awesome-game-ai)
* Related Project: [DouZero Project](https://github.com/kwai/DouZero)
* Zhihu: https://zhuanlan.zhihu.com/p/526723604
* Miscellaneous Resources: Have you heard of data-centric AI? Please check out our [data-centric AI survey](https://arxiv.org/abs/2303.10158) and [awesome data-centric AI resources](https://github.com/daochenzha/data-centric-AI)!
**Community:**
* **Slack**: Discuss in our [#rlcard-project](https://join.slack.com/t/rlcard/shared_invite/zt-rkvktsaq-xkMwz8BfKupCM6zGhO01xg) slack channel.
* **QQ Group**: Join our QQ group to discuss. Password: rlcardqqgroup
* Group 1: 665647450
* Group 2: 117349516
**News:**
* We have updated the tutorials in Jupyter Notebook to help you walk through RLCard! Please check [RLCard Tutorial](https://github.com/datamllab/rlcard-tutorial).
* All the algorithms can suppport [PettingZoo](https://github.com/PettingZoo-Team/PettingZoo) now. Please check [here](examples/pettingzoo). Thanks the contribtuion from [Yifei Cheng](https://github.com/ycheng517).
* Please follow [DouZero](https://github.com/kwai/DouZero), a strong Dou Dizhu AI and the [ICML 2021 paper](https://arxiv.org/abs/2106.06135). An online demo is available [here](https://douzero.org/). The algorithm is also integrated in RLCard. See [Training DMC on Dou Dizhu](docs/toy-examples.md#training-dmc-on-dou-dizhu).
* Our package is used in [PettingZoo](https://github.com/PettingZoo-Team/PettingZoo). Please check it out!
* We have released RLCard-Showdown, GUI demo for RLCard. Please check out [here](https://github.com/datamllab/rlcard-showdown)!
* Jupyter Notebook tutorial available! We add some examples in R to call Python interfaces of RLCard with reticulate. See [here](docs/toy-examples-r.md)
* Thanks for the contribution of [@Clarit7](https://github.com/Clarit7) for supporting different number of players in Blackjack. We call for contributions for gradually making the games more configurable. See [here](CONTRIBUTING.md#making-configurable-environments) for more details.
* Thanks for the contribution of [@Clarit7](https://github.com/Clarit7) for the Blackjack and Limit Hold'em human interface.
* Now RLCard supports environment local seeding and multiprocessing. Thanks for the testing scripts provided by [@weepingwillowben](https://github.com/weepingwillowben).
* Human interface of NoLimit Holdem available. The action space of NoLimit Holdem has been abstracted. Thanks for the contribution of [@AdrianP-](https://github.com/AdrianP-).
* New game Gin Rummy and human GUI available. Thanks for the contribution of [@billh0420](https://github.com/billh0420).
* PyTorch implementation available. Thanks for the contribution of [@mjudell](https://github.com/mjudell).
## Contributors
The following games are mainly developed and maintained by community contributors. Thank you!
* Gin Rummy: [@billh0420](https://github.com/billh0420)
* Bridge: [@billh0420](https://github.com/billh0420)
Thank all the contributors!
<a href="https://github.com/daochenzha"><img src="https://github.com/daochenzha.png" width="40px" alt="daochenzha" /></a>
<a href="https://github.com/hsywhu"><img src="https://github.com/hsywhu.png" width="40px" alt="hsywhu" /></a>
<a href="https://github.com/CaoYuanpu"><img src="https://github.com/CaoYuanpu.png" width="40px" alt="CaoYuanpu" /></a>
<a href="https://github.com/billh0420"><img src="https://github.com/billh0420.png" width="40px" alt="billh0420" /></a>
<a href="https://github.com/ruzhwei"><img src="https://github.com/ruzhwei.png" width="40px" alt="ruzhwei" /></a>
<a href="https://github.com/adrianpgob"><img src="https://github.com/adrianpgob.png" width="40px" alt="adrianpgob" /></a>
<a href="https://github.com/Zhigal"><img src="https://github.com/Zhigal.png" width="40px" alt="Zhigal" /></a>
<a href="https://github.com/aypee19"><img src="https://github.com/aypee19.png" width="40px" alt="aypee19" /></a>
<a href="https://github.com/Clarit7"><img src="https://github.com/Clarit7.png" width="40px" alt="Clarit7" /></a>
<a href="https://github.com/lhenry15"><img src="https://github.com/lhenry15.png" width="40px" alt="lhenry15" /></a>
<a href="https://github.com/ismael-elatifi"><img src="https://github.com/ismael-elatifi.png" width="40px" alt="ismael-elatifi" /></a>
<a href="https://github.com/mjudell"><img src="https://github.com/mjudell.png" width="40px" alt="mjudell" /></a>
<a href="https://github.com/jkterry1"><img src="https://github.com/jkterry1.png" width="40px" alt="jkterry1" /></a>
<a href="https://github.com/kaanozdogru"><img src="https://github.com/kaanozdogru.png" width="40px" alt="kaanozdogru" /></a>
<a href="https://github.com/junyuGuo"><img src="https://github.com/junyuGuo.png" width="40px" alt="junyuGuo" /></a>
<br />
<a href="https://github.com/Xixo99"><img src="https://github.com/Xixo99.png" width="40px" alt="Xixo99" /></a>
<a href="https://github.com/rodrigodelazcano"><img src="https://github.com/rodrigodelazcano.png" width="40px" alt="rodrigodelazcano" /></a>
<a href="https://github.com/Michael1015198808"><img src="https://github.com/Michael1015198808.png" width="40px" alt="Michael1015198808" /></a>
<a href="https://github.com/mia1996"><img src="https://github.com/mia1996.png" width="40px" alt="mia1996" /></a>
<a href="https://github.com/kaiks"><img src="https://github.com/kaiks.png" width="40px" alt="kaiks" /></a>
<a href="https://github.com/claude9493"><img src="https://github.com/claude9493.png" width="40px" alt="claude9493" /></a>
<a href="https://github.com/SonSang"><img src="https://github.com/SonSang.png" width="40px" alt="SonSang" /></a>
<a href="https://github.com/rishabhvarshney14"><img src="https://github.com/rishabhvarshney14.png" width="40px" alt="rishabhvarshney14" /></a>
<a href="https://github.com/aetheryang"><img src="https://github.com/aetheryang.png" width="40px" alt="aetheryang" /></a>
<a href="https://github.com/
没有合适的资源?快使用搜索试试~ 我知道了~
牌类游戏强化学习.AI机器人工具包.zip
共233个文件
py:203个
md:15个
pkl:4个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 36 浏览量
2024-05-05
07:57:29
上传
评论
收藏 405KB ZIP 举报
温馨提示
机器学习 (1)模拟人脑的机器学习 符号学习:模拟人脑的宏现心理级学习过程,以认知心理学原理为基础,以符号数据为输入,以符号运算为方法,用推理过程在图或状态空间中搜索,学习的目标为概念或规则等。符号学习的典型方法有记忆学习、示例学习、演绎学习.类比学习、解释学习等。 神经网络学习(或连接学习):模拟人脑的微观生理级学习过程,以脑和神经科学原理为基础,以人工神经网络为函数结构模型,以数值数据为输入,以数值运算为方法,用迭代过程在系数向量空间中搜索,学习的目标为函数。典型的连接学习有权值修正学习、拓扑结构学习。 (2)直接采用数学方法的机器学习 主要有统计机器学习。 [2] 统计机器学习是基于对数据的初步认识以及学习目的的分析,选择合适的数学模型,拟定超参数,并输入样本数据,依据一定的策略,运用合适的学习算法对模型进行训练,最后运用训练好的模型对数据进行分析预测。 统计机器学习三个要素: 模型(model):模型在未进行训练前,其可能的参数是多个甚至无穷的,故可能的模型也是多个甚至无穷的,这些模型构成的集合就是假设空间。 策略(strategy):即从假设空间中挑选出参数最优的模型的准则。
资源推荐
资源详情
资源评论
收起资源包目录
牌类游戏强化学习.AI机器人工具包.zip (233个子文件)
.gitignore 265B
game_options.ini 163B
action_space.json 770B
card2index.json 511B
card2index.json 55B
games.md 31KB
toy-examples.md 24KB
README.md 23KB
README.zh-CN.md 19KB
Gin-Rummy-GUI-Design.md 15KB
high-level-design.md 3KB
CONTRIBUTING.md 3KB
README.md 1KB
algorithms.md 1KB
customizing-environments.md 1KB
LICENSE.md 1KB
adding-new-environments.md 1KB
adding-models.md 949B
README.md 828B
developping-algorithms.md 770B
policy.pkl 31KB
regrets.pkl 31KB
average_policy.pkl 31KB
iteration.pkl 5B
test_holdem_utils.py 25KB
utils.py 22KB
dqn_agent.py 21KB
nfsp_agent.py 20KB
game_canvas.py 16KB
game_canvas_post_doing_action.py 15KB
judger.py 14KB
game_canvas_updater.py 14KB
trainer.py 13KB
bridge.py 12KB
round.py 11KB
utils.py 11KB
test_gin_rummy_game.py 10KB
game_canvas_getter.py 10KB
round.py 10KB
judger.py 9KB
game.py 9KB
settings.py 9KB
env.py 8KB
utils.py 8KB
round.py 8KB
game.py 8KB
cfr_agent.py 8KB
test_doudizhu_judger.py 7KB
utils.py 7KB
card_image.py 7KB
preferences_window.py 7KB
doudizhu.py 7KB
test_models.py 7KB
game.py 7KB
judge.py 7KB
file_writer.py 7KB
status_messaging.py 7KB
game.py 7KB
starting_new_game.py 6KB
test_nolimitholdem_game.py 6KB
limitholdem_rule_models.py 6KB
doudizhu_rule_models.py 6KB
test_doudizhu_game.py 6KB
test_bridge_game.py 6KB
round.py 6KB
utils.py 6KB
melding.py 6KB
game.py 5KB
player.py 5KB
game.py 5KB
gin_rummy_rule_models.py 5KB
move.py 5KB
model.py 5KB
run_rl.py 5KB
judger.py 5KB
seeding.py 5KB
round.py 5KB
game.py 5KB
game.py 4KB
pettingzoo_utils.py 4KB
round.py 4KB
run_rl.py 4KB
game_canvas_query.py 4KB
round.py 4KB
gin_rummy.py 4KB
action_event.py 4KB
player.py 4KB
info_messaging.py 4KB
game_frame.py 4KB
mahjong.py 4KB
nolimitholdem.py 4KB
action_event.py 4KB
leducholdem_rule_models.py 4KB
test_uno_game.py 4KB
leducholdem.py 4KB
test_limitholdem_game.py 4KB
limitholdem.py 4KB
env_thread.py 4KB
handling_tap_discard_pile.py 3KB
utils.py 3KB
共 233 条
- 1
- 2
- 3
资源评论
野生的狒狒
- 粉丝: 3393
- 资源: 2436
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功