# :wavy_dash: *hctsa* :wavy_dash:: highly comparative time-series analysis
[![DOI](https://zenodo.org/badge/10790340.svg)](https://zenodo.org/badge/latestdoi/10790340)
[![Twitter](https://img.shields.io/twitter/url/https/twitter.com/compTimeSeries.svg?style=social&label=Follow%20%40compTimeSeries)](https://twitter.com/compTimeSeries)
*hctsa* is a software package for running highly comparative time-series analysis using [Matlab](https://www.mathworks.com/products/matlab/) (full support for versions R2018b or later).
The software provides a code framework that enables the extraction of thousands of time-series features from a time series (or a time-series dataset).
It also provides a range of tools for visualizing and analyzing the resulting time-series feature matrix, including:
1. Normalizing and clustering the data,
2. Producing low-dimensional representations of the data,
3. Identifying and interpreting discriminating features between different classes of time series,
4. Learning multivariate classification models.
**Feel free to [email me](mailto:ben.d.fulcher@gmail.com) for help with real-world applications of _hctsa_** :nerd_face:
### Acknowledgement :+1:
If you use this software, please read and cite these open-access articles:
* B.D. Fulcher and N.S. Jones. [_hctsa_: A computational framework for automated time-series phenotyping using massive feature extraction](http://www.cell.com/cell-systems/fulltext/S2405-4712\(17\)30438-6). *Cell Systems* **5**, 527 (2017).
* B.D. Fulcher, M.A. Little, N.S. Jones. [Highly comparative time-series analysis: the empirical structure of time series and their methods](http://rsif.royalsocietypublishing.org/content/10/83/20130048.full). *J. Roy. Soc. Interface* **10**, 83 (2013).
Feedback, as [email](mailto:ben.d.fulcher@gmail.com), [github issues](https://github.com/benfulcher/hctsa/issues) or [pull requests](https://help.github.com/articles/using-pull-requests/), is much appreciated.
**For commercial use of *hctsa*, including licensing and consulting, contact [Engine Analytics](http://www.engineanalytics.org/).**
## Getting Started :blush:
### Documentation 📖
__Comprehensive documentation__ for *hctsa*, from getting started through to more advanced analyses is on [gitbook](https://hctsa-users.gitbook.io/hctsa-manual).
### Downloading the repository :arrow_down:
For users unfamiliar with git, the current version of the repository can be downloaded by simply clicking the green _Clone or download_ button, and then clicking _Download .zip_.
It is recommended to use the repository with git.
For this, please [make a fork](https://help.github.com/articles/fork-a-repo/) of it, clone it to your local machine, and then set an [upstream remote](https://help.github.com/articles/fork-a-repo/#step-3-configure-git-to-sync-your-fork-with-the-original-spoon-knife-repository) to keep it synchronized with the main repository e.g., using the following code:
```
git remote add upstream git://github.com/benfulcher/hctsa.git
```
(make sure that you have [generated an ssh key](https://help.github.com/articles/generating-ssh-keys/) and associated it with your Github account).
You can then update to the latest stable version of the repository by pulling the master branch to your local repository:
```
git pull upstream master
```
For analyzing specific datasets, we recommend working outside of the repository so that incremental updates can be pulled from the upstream repository.
Details on how to merge the latest version of the repository with the local changes in your fork can be found [here](https://help.github.com/articles/syncing-a-fork/).
## Related resources
### _CompEngine_ :collision:
[_CompEngine_](http://www.comp-engine.org) is an accompanying web resource for this project.
It is a self-organizing database of time-series data that allows users to upload, explore, and compare thousands of diverse types of time-series data.
This vast and growing collection of time-series data can also be downloaded.
You can read more about it in our [📙preprint](https://arxiv.org/abs/1905.01042).
### _catch22_ :two::two:
Is over 7000 just a few too many features for your application?
Do you not have access to a Matlab license?
_catch22_ has all of your faux-rhetorical questions covered.
This reduced set of 22 features, determined through a combination of classification performance and mutual redundancy as explained in [this paper](https://arxiv.org/abs/1901.10200v2), is available [here](https://github.com/chlubba/catch22) as an efficiently coded C implementation with wrappers for python and R.
### _hctsa_ datasets and example workflows :floppy_disk:
There are a range of open datasets with pre-computed _hctsa_ features, as well as some examples of _hctsa_ workflows.
* [_C. elegans_ movement speed data](https://figshare.com/articles/Highly_comparative_time-series_analysis_of_Caenorhabditis_elegans_movement_speed/3863559) and associated [analysis code](https://github.com/benfulcher/hctsa_phenotypingWorm).
* [Drosophila movement speed](https://figshare.com/articles/Highly_comparative_time-series_analysis_of_Drosophila_melanogaster_movement_speed/3863553) and associated [analysis code](https://github.com/benfulcher/hctsa_phenotypingFly).
* [1000 empirical time series](https://figshare.com/articles/1000_Empirical_Time_series/5436136)
(If you have data to share and host, let me know and I'll add it to this list)
### Running _hctsa_ on a cluster :computer:
Matlab code for computing features for an initialized `HCTSA.mat` file, by distributing the computation across a large number of cluster jobs (using pbs or slurm schedulers) is [here](https://github.com/benfulcher/distributed_hctsa).
### Publications :closed_book:
_hctsa_ has been used by us and others to do new science in neuroscience, engineering, and biomedicine.
An updated list of publications using _hctsa_ is on this [wiki page](https://github.com/benfulcher/hctsa/wiki/Publications-using-hctsa).
## *hctsa* licenses
### Internal licenses
There are two licenses applied to the core parts of the repository:
1. The framework for running *hctsa* analyses and visualizations is licensed as the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-nc-sa/4.0/).
A license for commercial use is available from [Engine Analytics](http://www.engineanalytics.org/).
2. Code for computing features from time-series data is licensed as [GNU General Public License version 3](http://www.gnu.org/licenses/gpl-3.0.en.html).
A range of external code packages are provided in the **Toolboxes** directory of the repository, and each have their own associated license (as outlined below).
### External packages and dependencies
Many features in _hctsa_ rely on external packages and Matlab toolboxes.
In the case that some of them are unavailable, *hctsa* can still be used, but only a reduced set of time-series features will be computed.
_hctsa_ uses the following [Matlab toolboxes](https://mathworks.com/programs/nrd/matlab-toolbox-price-request.html?ref=ggl&s_eid=ppc_18665571802&q=matlab%20toolboxes%20price): Statistics, Signal Processing, Curve Fitting, System Identification, Wavelet, and Econometrics.
The following external time-series analysis code packages are provided with the software (in the **Toolboxes** directory), and are used by our main feature-extraction algorithms to compute meaningful structural features from time series:
* [*TISEAN* package for nonlinear time-series analysis, version 3.0.1](http://www.mpipks-dresden.mpg.de/~tisean/Tisean_3.0.1/index.html) (GPL license).
* [*TSTOOL* package for nonlinear time-series analysis, version 1.2](http://www.dpi.physik.uni-goettingen.de/tstool/) (GPL license).
* Joseph T. Lizier's [Java Information Dynamics Toolkit (JIDT)](https://github.com/jlizier/jidt) for studying information-theoretic measures of computation in complex systems, version 1.3 (GPL lice
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
时间序列分析 一个时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。 趋势:是时间序列在长时期内呈现出来的持续向上或持续向下的变动。 季节变动:是时间序列在一年内重复出现的周期性波动。它是诸如气候条件、生产条件、节假日或人们的风俗习惯等各种因素影响的结果。 循环波动:是时间序列呈现出得非固定长度的周期性变动。循环波动的周期可能会持续一段时间,但与趋势不同,它不是朝着单一方向的持续变动,而是涨落相同的交替波动。 不规则波动:是时间序列中除去趋势、季节变动和周期波动之后的随机波动。不规则波动通常总是夹杂在时间序列中,致使时间序列产生一种波浪形或震荡式的变动。只含有随机波动的序列也称为平稳序列。 时间序列建模基本步骤是:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。
资源推荐
资源详情
资源评论
收起资源包目录
高度比较的时间序列分析.zip (1911个子文件)
amutual.m.bkp 1KB
display.m.bkp 779B
firstzero.m.bkp 720B
spec2.m.bkp 600B
plosivity.m.bkp 552B
splinefit.c 19KB
arima-model.c 18KB
sing.c 17KB
lyap_spec.c 15KB
d2.c 15KB
nstat_z.c 13KB
ghkss.c 13KB
CO_AutoCorr.c 13KB
SB_MotifThree.c 13KB
lfo-test.c 12KB
sampen.c 12KB
sampen_mex.c 12KB
main.c 12KB
lfo-run.c 11KB
d2.c 11KB
eigen.c 11KB
lfo-ar.c 11KB
lzo-run.c 10KB
nrlazy.c 10KB
ar-model.c 10KB
rbf.c 10KB
lzo-test.c 10KB
polyback.c 9KB
lyap_k.c 9KB
boxcount.c 9KB
false_nearest.c 9KB
SC_FluctAnal.c 9KB
lzo-gm.c 8KB
pca.c 8KB
ML_fastdfa_core.c 8KB
delay.c 8KB
polynom.c 8KB
polynomp.c 8KB
fsle.c 8KB
butterworth.c 7KB
sav_gol.c 7KB
xzero.c 7KB
makenoise.c 7KB
lyap_r.c 7KB
mem_spec.c 6KB
check_option.c 6KB
poincare.c 6KB
extrema.c 6KB
recurr.c 6KB
ML_kvsteps_core.c 6KB
stats.c 6KB
mutual.c 6KB
ML_close_ret.c 6KB
MS_shannon.c 5KB
svd.c 5KB
rescale.c 5KB
get_multi_series.c 5KB
low121.c 5KB
xcor.c 5KB
av-d2.c 5KB
resample.c 5KB
DN_OutlierInclude.c 5KB
histogram.c 5KB
arguments.c 5KB
histogram_tisean2.1.c 5KB
corr.c 5KB
SP_Summaries.c 5KB
histcounts.c 4KB
surrogates.c 4KB
helper_functions.c 4KB
eigen.c 4KB
FC_LocalSimple.c 4KB
dft.c 4KB
rand.c 4KB
MS_complexitybs.c 4KB
PD_PeriodicityWang.c 4KB
noise.c 4KB
SB_TransitionMatrix.c 3KB
clean.c 3KB
M_wrapper.c 3KB
polypar.c 3KB
get_series.c 3KB
MS_nearest.c 3KB
rand.c 3KB
search_datafile.c 3KB
autocor3.c 3KB
DN_HistogramMode_5.c 3KB
rand_arb_dist.c 3KB
timerev.c 2KB
rank.c 2KB
solve_chol.c 2KB
DN_HistogramMode_10.c 2KB
SB_BinaryStats.c 2KB
solvele.c 2KB
invert_matrix.c 2KB
surro.c 2KB
find_multi_neighbors.c 2KB
find_neighbors.c 2KB
myfgets.c 2KB
make_multi_index.c 2KB
共 1911 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
野生的狒狒
- 粉丝: 3393
- 资源: 2436
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- python003-python电影数据分析及可视化系统建设.zip
- gcc15交叉编译工具链windows版,支持32位和64位windows软件编译,gcc version 15.0.0 20241111 (experimental) (GCC)
- STM32汇编语言点亮led灯
- 量子计算机:原理、优势与挑战的全面解析
- 基于Rust 算法集合2024
- gcc15工具链windows版,gcc version 15.0.0 20241117 (experimental) (GCC)
- Delphi写的简易时间服务器,用于早期CA时间校准用.rar
- C语言文件读写操作的基本示例与实现步骤
- 2024年电赛自动泊车系统
- SQL Server:功能概述与基本操作指南
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功