<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
 
![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/85340570-30360a80-b49b-11ea-87cf-bdf33d53ae15.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
- **April 1, 2020**: Start development of future compound-scaled [YOLOv3](https://github.com/ultralytics/yolov3)/[YOLOv4](https://github.com/AlexeyAB/darknet)-based PyTorch models.
## Pretrained Checkpoints
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 36.1 | 36.1 | 55.3 | **2.1ms** | **476** || 7.5M | 13.2B
| [YOLOv5m](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 43.5 | 43.5 | 62.5 | 3.0ms | 333 || 21.8M | 39.4B
| [YOLOv5l](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 47.0 | 47.1 | 65.6 | 3.9ms | 256 || 47.8M | 88.1B
| [YOLOv5x](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | **49.0** | **49.0** | **67.4** | 6.1ms | 164 || 89.0M | 166.4B
| | | | | | || |
| [YOLOv3-SPP](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by `python test.py --data coco.yaml --img 672 --conf 0.001`
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by `python test.py --data coco.yaml --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
## Requirements
Python 3.7 or later with all `requirements.txt` dependencies installed, including `torch >= 1.5`. To install run:
```bash
$ pip install -U -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
## Inference
Inference can be run on most common media formats. Model [checkpoints](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J) are downloaded automatically if available. Results are saved to `./inference/output`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on examples in the `./inference/images` folder:
```bash
$ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)
Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)
image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
Results saved to /content/yolov5/inference/output
```
<img src="https://user-images.githubusercontent.com/26833433/83082816-59e54880-a039-11ea-8abe-ab90cc1ec4b0.jpeg" width="500">
## Training
Download [COCO](https://github.com/ultralytics/yolov5/blob/master/data/get_coco2017.sh), install [Apex](https://github.com/NVIDIA/apex) and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
深度学习-YOLO目标检测yolov5抽烟识别检测数据集(5000张图片数据),吸烟行为检测数据集,5000多张使用lableimg软件标注软件标注好的吸烟数据,图片格式为jpg,标签有两种,分别为xml格式和txt格式
资源推荐
资源详情
资源评论
收起资源包目录
深度学习-YOLO目标检测 yolov5抽烟识别检测数据集(5000张图片数据).zip (2000个子文件)
README.md 9KB
eval.py 13KB
from_video.py 3KB
test2.py 2KB
main.py 3B
smoke_b000464.xml 2KB
smoke_b000018.xml 2KB
smoke_b000506.xml 1KB
smoke_b001916.xml 1KB
820_strawberry.xml 1KB
000593.xml 1KB
smoke_a417.xml 998B
smoke_a414.xml 997B
smoke_a859.xml 987B
000164.xml 984B
smoke_a187.xml 967B
smoke_b662.xml 854B
smoke_b631.xml 852B
smoke_b000377.xml 842B
smoke_b000187.xml 831B
smoke_b000214.xml 829B
smoke_b000766.xml 828B
smoke_b000746.xml 828B
smoke_b000702.xml 828B
smoke_b000765.xml 828B
smoke_b000700.xml 828B
smoke_b000791.xml 828B
smoke_b000726.xml 828B
smoke_b000768.xml 828B
smoke_b000701.xml 828B
smoke_b000107.xml 827B
smoke_b000158.xml 827B
smoke_b000118.xml 827B
smoke_b000021.xml 826B
smoke_b000120.xml 826B
smoke_b000156.xml 825B
smoke_b000967.xml 825B
smoke_b000923.xml 825B
smoke_b000314.xml 825B
smoke_b000885.xml 823B
smoke_b000850.xml 822B
smoke_b001638.xml 810B
smoke_b002092.xml 804B
smoke_b002098.xml 802B
smoke_b002095.xml 802B
smoke_b001907.xml 802B
smoke_b002000.xml 801B
smoke_b001903.xml 800B
smoke_b002029.xml 800B
smoke_b002007.xml 800B
smoke_b001902.xml 800B
smoke_b002072.xml 799B
smoke_b002067.xml 799B
smoke_b002008.xml 798B
smoke_b002059.xml 798B
smoke_b002026.xml 798B
smoke_b001183.xml 782B
smoke_b001296.xml 782B
smoke_b001186.xml 781B
smoke_b001156.xml 780B
smoke_b001154.xml 780B
smoke_b001287.xml 780B
smoke_b001171.xml 780B
smoke_b001552.xml 779B
smoke_b001407.xml 777B
smoke_b001179.xml 777B
342_strawberry.xml 776B
smoke_b001168.xml 776B
287_strawberry.xml 776B
smoke_b001435.xml 775B
smoke_b001180.xml 775B
smoke_b001567.xml 775B
smoke_a456.xml 772B
smoke_a526.xml 772B
smoke_a405.xml 772B
smoke_a411.xml 772B
smoke_a536.xml 772B
smoke_a397.xml 771B
498_strawberry.xml 770B
smoke_a478.xml 769B
smoke_b002342.xml 768B
smoke_b002175.xml 768B
smoke_b002315.xml 768B
smoke_b002340.xml 768B
smoke_b002363.xml 768B
smoke_b002169.xml 767B
smoke_b002174.xml 767B
smoke_b002196.xml 767B
647_strawberry.xml 766B
522_strawberry.xml 763B
000437.xml 760B
000064.xml 760B
663_strawberry.xml 759B
000129.xml 759B
848_strawberry.xml 758B
000158.xml 757B
799_strawberry.xml 755B
000210.xml 754B
831_strawberry.xml 754B
000462.xml 750B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- Myysq6610262024-09-17非常有用的资源,有一定的参考价值,受益匪浅,值得下载。
- kefu1992024-06-18发现一个宝藏资源,资源有很高的参考价值,赶紧学起来~
GJZGRB
- 粉丝: 2955
- 资源: 7736
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功