# Training of Stripformer
We train Stripformer with ID-Blau in two stages:
Relative paths should be defined based on the root directory path.
- We pre-train Stripformer for 1000 epochs.
- Run the following command.
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 Stripformer/deblur_train_pretrained.py --only_use_generate_data --generate_path ./dataset/GOPRO_Large_Reblur
```
After pretraining, we proceed with finetuning based on the original configuration of Stripformer.
- We use the pretrained weights from the 500th epoch for finetuning to avoid excessively long training times. Alternatively, you can choose weights from later epochs if needed.
- First use a patch size of 256x256 to train Stripformer for 3000 epochs.
- Run the following command.
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 Stripformer/deblur_train.py --resume ./experiments/Stripformer_pretrained/epoch_500_Stripformer_pretrained.pth
```
- After 3000 epochs, we keep training Stripformer for 1000 epochs with patch size 512x512
- Run the following command.
```
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 Stripformer/deblur_train.py --resume ./experiments/Stripformer_first_stage/final_Stripformer_first_stage.pth
```
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
基于隐式扩散的重新模糊增强方法python实现源码+项目运行说明.zip (96个子文件)
项目运行说明.md 9KB
weights
README.md 46B
ID_Blau.pth 36.35MB
MIMO_UNet
__init__.py 0B
deblur_train_pretrained.py 17KB
MIMOUNet.py 9KB
layers.py 1KB
deblur_train.py 17KB
deblur_train_realblur.py 17KB
README.md 970B
deblur_predict.py 4KB
eval_realblur.py 4KB
FFTformer
__init__.py 0B
losses.py 6KB
deblur_train_pretrained.py 15KB
deblur_train.py 15KB
model.py 10KB
loss_util.py 3KB
deblur_train_realblur.py 15KB
README.md 949B
deblur_predict.py 4KB
utils
utils.py 5KB
set_condition.py 12KB
flow_viz.py 4KB
dataset
README.md 1KB
diffusion_train.py 15KB
diffusion_inference.py 13KB
figure
Reblur.png 630KB
Quantitative.png 193KB
Framework.png 216KB
dataloader.py 14KB
eval_GoPro_HIDE.m 1KB
models
__init__.py 0B
losses.py 7KB
diffusion_network.py 6KB
diffusion_model.py 8KB
Restormer
__init__.py 0B
losses.py 4KB
deblur_train_pretrained.py 15KB
deblur_train.py 17KB
model.py 20KB
loss_util.py 3KB
deblur_train_realblur.py 17KB
README.md 949B
deblur_predict.py 4KB
Stripformer
__init__.py 0B
losses.py 4KB
deblur_train_pretrained.py 15KB
deblur_train_first.py 15KB
model.py 16KB
deblur_train_second.py 15KB
deblur_train_realblur.py 15KB
README.md 1KB
deblur_predict.py 4KB
PrepareCondition
find_composite.py 6KB
train_mixed.sh 921B
train_standard.sh 860B
detail
test_composite_img_frames.json 119KB
train_sharp_img_origin_path.json 163KB
test_sharp_img_origin_path.json 86KB
train_composite_img_frames.json 224KB
download_models.sh 97B
alt_cuda_corr
setup.py 381B
correlation_kernel.cu 10KB
correlation.cpp 1KB
evaluate.py 6KB
demo-frames
frame_0020.png 655KB
frame_0023.png 659KB
frame_0022.png 658KB
frame_0016.png 652KB
frame_0021.png 657KB
frame_0025.png 660KB
frame_0019.png 653KB
frame_0017.png 652KB
frame_0018.png 652KB
frame_0024.png 660KB
weights
raft-things.pth 20.13MB
LICENSE 1KB
chairs_split.txt 45KB
core
__init__.py 0B
extractor.py 9KB
corr.py 3KB
utils
utils.py 2KB
__init__.py 0B
flow_viz.py 4KB
frame_utils.py 4KB
augmentor.py 9KB
raft.py 5KB
datasets.py 9KB
update.py 5KB
generate_condition.py 6KB
RAFT.png 199KB
.gitignore 77B
train.py 8KB
demo.py 2KB
README.md 448B
共 96 条
- 1
资源评论
onnx
- 粉丝: 9331
- 资源: 4891
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- VC6.0 windows.h 头文件 原始上传备份
- 基于Flask框架的JavaScript、HTML、CSS、Python整合的天气系统设计源码
- ad7606_drv.h
- 基于YOLOv5的工地安全帽识别及危险区域禁入系统设计源码
- 基于Alberto Abadie理论的Penalized Synthetic Control方法设计源码
- Reality安全下载.apk
- 基于Java语言的ape-club程序员社区交流平台设计源码
- 12864yejin.OBJ
- AirportItlwm-v2.3.0-stable-Sonoma14.0.kext.zip
- BOOT-00001前后端分离个人财务管理系统源码+数据库.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功