//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.calib3d;
import java.util.ArrayList;
import java.util.List;
import org.opencv.calib3d.UsacParams;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDouble;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.MatOfPoint3f;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.utils.Converters;
// C++: class Calib3d
public class Calib3d {
// C++: enum RobotWorldHandEyeCalibrationMethod
public static final int
CALIB_ROBOT_WORLD_HAND_EYE_SHAH = 0,
CALIB_ROBOT_WORLD_HAND_EYE_LI = 1;
// C++: enum HandEyeCalibrationMethod
public static final int
CALIB_HAND_EYE_TSAI = 0,
CALIB_HAND_EYE_PARK = 1,
CALIB_HAND_EYE_HORAUD = 2,
CALIB_HAND_EYE_ANDREFF = 3,
CALIB_HAND_EYE_DANIILIDIS = 4;
// C++: enum SolvePnPMethod
public static final int
SOLVEPNP_ITERATIVE = 0,
SOLVEPNP_EPNP = 1,
SOLVEPNP_P3P = 2,
SOLVEPNP_DLS = 3,
SOLVEPNP_UPNP = 4,
SOLVEPNP_AP3P = 5,
SOLVEPNP_IPPE = 6,
SOLVEPNP_IPPE_SQUARE = 7,
SOLVEPNP_MAX_COUNT = 7+1;
// C++: enum ScoreMethod
public static final int
SCORE_METHOD_RANSAC = 0,
SCORE_METHOD_MSAC = 1,
SCORE_METHOD_MAGSAC = 2,
SCORE_METHOD_LMEDS = 3;
// C++: enum <unnamed>
public static final int
CV_ITERATIVE = 0,
CV_EPNP = 1,
CV_P3P = 2,
CV_DLS = 3,
CvLevMarq_DONE = 0,
CvLevMarq_STARTED = 1,
CvLevMarq_CALC_J = 2,
CvLevMarq_CHECK_ERR = 3,
LMEDS = 4,
RANSAC = 8,
RHO = 16,
USAC_DEFAULT = 32,
USAC_PARALLEL = 33,
USAC_FM_8PTS = 34,
USAC_FAST = 35,
USAC_ACCURATE = 36,
USAC_PROSAC = 37,
USAC_MAGSAC = 38,
CALIB_CB_ADAPTIVE_THRESH = 1,
CALIB_CB_NORMALIZE_IMAGE = 2,
CALIB_CB_FILTER_QUADS = 4,
CALIB_CB_FAST_CHECK = 8,
CALIB_CB_EXHAUSTIVE = 16,
CALIB_CB_ACCURACY = 32,
CALIB_CB_LARGER = 64,
CALIB_CB_MARKER = 128,
CALIB_CB_SYMMETRIC_GRID = 1,
CALIB_CB_ASYMMETRIC_GRID = 2,
CALIB_CB_CLUSTERING = 4,
CALIB_NINTRINSIC = 18,
CALIB_USE_INTRINSIC_GUESS = 0x00001,
CALIB_FIX_ASPECT_RATIO = 0x00002,
CALIB_FIX_PRINCIPAL_POINT = 0x00004,
CALIB_ZERO_TANGENT_DIST = 0x00008,
CALIB_FIX_FOCAL_LENGTH = 0x00010,
CALIB_FIX_K1 = 0x00020,
CALIB_FIX_K2 = 0x00040,
CALIB_FIX_K3 = 0x00080,
CALIB_FIX_K4 = 0x00800,
CALIB_FIX_K5 = 0x01000,
CALIB_FIX_K6 = 0x02000,
CALIB_RATIONAL_MODEL = 0x04000,
CALIB_THIN_PRISM_MODEL = 0x08000,
CALIB_FIX_S1_S2_S3_S4 = 0x10000,
CALIB_TILTED_MODEL = 0x40000,
CALIB_FIX_TAUX_TAUY = 0x80000,
CALIB_USE_QR = 0x100000,
CALIB_FIX_TANGENT_DIST = 0x200000,
CALIB_FIX_INTRINSIC = 0x00100,
CALIB_SAME_FOCAL_LENGTH = 0x00200,
CALIB_ZERO_DISPARITY = 0x00400,
CALIB_USE_LU = (1 << 17),
CALIB_USE_EXTRINSIC_GUESS = (1 << 22),
FM_7POINT = 1,
FM_8POINT = 2,
FM_LMEDS = 4,
FM_RANSAC = 8,
fisheye_CALIB_USE_INTRINSIC_GUESS = 1 << 0,
fisheye_CALIB_RECOMPUTE_EXTRINSIC = 1 << 1,
fisheye_CALIB_CHECK_COND = 1 << 2,
fisheye_CALIB_FIX_SKEW = 1 << 3,
fisheye_CALIB_FIX_K1 = 1 << 4,
fisheye_CALIB_FIX_K2 = 1 << 5,
fisheye_CALIB_FIX_K3 = 1 << 6,
fisheye_CALIB_FIX_K4 = 1 << 7,
fisheye_CALIB_FIX_INTRINSIC = 1 << 8,
fisheye_CALIB_FIX_PRINCIPAL_POINT = 1 << 9;
// C++: enum LocalOptimMethod
public static final int
LOCAL_OPTIM_NULL = 0,
LOCAL_OPTIM_INNER_LO = 1,
LOCAL_OPTIM_INNER_AND_ITER_LO = 2,
LOCAL_OPTIM_GC = 3,
LOCAL_OPTIM_SIGMA = 4;
// C++: enum GridType
public static final int
CirclesGridFinderParameters_SYMMETRIC_GRID = 0,
CirclesGridFinderParameters_ASYMMETRIC_GRID = 1;
// C++: enum UndistortTypes
public static final int
PROJ_SPHERICAL_ORTHO = 0,
PROJ_SPHERICAL_EQRECT = 1;
// C++: enum SamplingMethod
public static final int
SAMPLING_UNIFORM = 0,
SAMPLING_PROGRESSIVE_NAPSAC = 1,
SAMPLING_NAPSAC = 2,
SAMPLING_PROSAC = 3;
// C++: enum NeighborSearchMethod
public static final int
NEIGH_FLANN_KNN = 0,
NEIGH_GRID = 1,
NEIGH_FLANN_RADIUS = 2;
//
// C++: Mat cv::estimateAffine2D(Mat from, Mat to, Mat& inliers = Mat(), int method = RANSAC, double ransacReprojThreshold = 3, size_t maxIters = 2000, double confidence = 0.99, size_t refineIters = 10)
//
/**
* Computes an optimal affine transformation between two 2D point sets.
*
* It computes
* \(
* \begin{bmatrix}
* x\\
* y\\
* \end{bmatrix}
* =
* \begin{bmatrix}
* a_{11} & a_{12}\\
* a_{21} & a_{22}\\
* \end{bmatrix}
* \begin{bmatrix}
* X\\
* Y\\
* \end{bmatrix}
* +
* \begin{bmatrix}
* b_1\\
* b_2\\
* \end{bmatrix}
* \)
*
* @param from First input 2D point set containing \((X,Y)\).
* @param to Second input 2D point set containing \((x,y)\).
* @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
* @param method Robust method used to compute transformation. The following methods are possible:
* <ul>
* <li>
* cv::RANSAC - RANSAC-based robust method
* </li>
* <li>
* cv::LMEDS - Least-Median robust method
* RANSAC is the default method.
* @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
* a point as an inlier. Applies only to RANSAC.
* @param maxIters The maximum number of robust method iterations.
* @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
* between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
* significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
* @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
* Passing 0 will disable refining, so the output matrix will be output of robust method.
* </li>
* </ul>
*
* @return Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
* could not be estimated. The returned matrix has the following form:
* \(
* \begin{bmatrix}
* a_{11} & a_{12} & b_1\\
* a_{21} & a_{22} & b_2\\
* \end{bmatrix}
* \)
*
* The function estimates an optimal 2D affine transformation between two 2D point sets using the
* selected robust algorithm.
*
* The computed transformation is then refined further (using only inliers) with the
* Levenberg-Marquardt method to reduce the re-projection error even more.
*
* <b>Note:</b>
* The RANSAC method can handle practically any ratio of outliers but needs a threshold to
* distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
* correctly only when there are more than 50% of inliers.
onnx
- 粉丝: 1w+
- 资源: 5626
最新资源
- 毕业设计-基于python实现的爬取携程景点数据和评论数据源代码+文档说明
- 微网优化调度 机组组合 主题:基于YALMIP 的微网优化调度模型 内容简介:程序基于MATLAB yalmip 开发,做了一个简单的微网优化调度模型,模型中含有蓄电池储能、风电、光伏等发电单元,程
- DEEP LEARNING:A Comprehensive Guide.pdf
- 毕业设计基于python实现的爬取携程景点数据和评论数据源代码+文档说明
- 微网孤岛优化调度 matlab 编程语言:matlab 内容摘要:采用灰狼算法实现微网孤岛优化调度,考虑风光、微燃机、燃料电池和蓄电池等主体,考虑价格型和激励型需求响应,以经济成本和环境治理成本为目标
- FactoryIO堆垛机仿真 使用简单的梯形图与SCL语言编写,通俗易懂,写有详细注释,起到抛砖引玉的作用,比较适合有动手能力的入门初学者 软件环境: 1、西门子编程软件:TIA Portal V1
- Comsol激光仿真通孔,利用高斯热源脉冲激光对材料进行蚀除过程仿真,其中运用了变形几何和固体传热实现单脉冲通孔的加工
- 毕业设计Python+Django音乐推荐系统源码+文档说明(高分毕设)
- glibC自动升级脚本
- C语言编写一个简单的俄罗斯方块游戏.docx
- 3b083教师工作量计算系统_springboot+vue.zip
- 3b081火车订票系统_springboot+vue.zip
- 3b082健身房管理系统_springboot+vue.zip
- C#与松下PLC串口 以太网通讯,自己写的,注释包含了自己理解和整理的资料,公司项目中使用,通讯用的PLC型号为FP-XH C60ET,文件包含:dll封装,测试程序,通讯文档 有代码注释
- python求链表长度的递归方法
- 3b084教师考勤系统_springboot+vue0.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈