时间:1606140914.8159137 时间:1606191094.6552622 时间:1606192625.0438352 y_val_loss:[2.4273374557495115, 2.28765615940094, 2.0659123730659483, 1.9319819939136504, 1.6686731159687043, 1.5667427730560304, 1.5602529859542846, 1.2700449180603028, 1.292677071094513, 1.2022554552555085, 1.268564088344574, 1.220507518053055, 1.1359961569309234, 1.0498416769504546, 1.0268718552589418, 0.9109136247634888, 0.9944430422782898, 1.0259382182359695, 0.7647312325239182, 0.76872888982296, 0.7754145580530166, 0.7212223833799363, 0.8194372630119324, 0.704491982460022, 0.6078826272487641, 0.6317809450626374, 0.6393440413475037, 0.5985287064313889, 0.5921729284524918, 0.6320235347747802, 0.5716330021619797, 0.5843299478292465, 0.5738896560668946, 0.5258826959133148, 0.5317652386426925, 0.5870622938871384, 0.5717323088645935, 0.5189021116495133, 0.5026655942201614, 0.5267973738908768, 0.4622466814517975, 0.43359258681535723, 0.4850592839717865, 0.460816308259964, 0.49900916874408724, 0.40965403825044633, 0.4095002067089081, 0.3858474802970886, 0.5056207564473152, 0.4217184221744537] 时间:1606210305.0690804 y_val_loss:[0.7752084076404572, 0.5565940481424332, 0.5294834381341934, 0.4569820475578308, 0.5186487382650375, 0.4232161167263985, 0.4758201950788498, 0.41259342670440674, 0.3976577579975128, 0.4521760955452919, 0.472276326417923, 0.42954782098531724, 0.4270413380861282, 0.33074643462896347, 0.31594628512859346, 0.3509687265753746, 0.40492474526166916, 0.35889980286359785, 0.37174630761146543, 0.4078557533025742, 0.38312122285366057, 0.3820595046877861, 0.37089005500078204, 0.3830438667535782, 0.34877597212791445, 0.3564660733938217, 0.37081303834915164, 0.3220472538471222, 0.3051016166806221, 0.36169863045215606, 0.26961969763040544, 0.3443392884731293, 0.31955625623464584, 0.31096470564603806, 0.28061358124017716, 0.269675158560276, 0.2676200670003891, 0.27306378751993177, 0.30519588589668273, 0.2601953887939453, 0.3497662389278412, 0.30496005147695543, 0.33506335705518725, 0.29826076865196227, 0.2916314160823822, 0.2696980181336403, 0.30484621971845627, 0.2956899052858353, 0.2747258272767067, 0.2296649757027626] 时间:1606279922.6317868 时间:1606300156.917122
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【项目介绍】 基于python实现的各种工具零件表面高精度缺陷检测源码.zip 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!! 该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶, 或者实际项目借鉴参考! 当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。如果基础还行,也可在此代码基础上进行修改,以实现其他功能。
资源推荐
资源详情
资源评论
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
收起资源包目录
![package](https://csdnimg.cn/release/downloadcmsfe/public/img/package.f3fc750b.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/TXT.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/TXT.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
![file-type](https://csdnimg.cn/release/download/static_files/pc/images/minetype/UNKNOWN.png)
共 8 条
- 1
资源评论
![avatar-default](https://csdnimg.cn/release/downloadcmsfe/public/img/lazyLogo2.1882d7f4.png)
- weixin_406897792025-01-01资源很受用,资源主总结的很全面,内容与描述一致,解决了我当下的问题。
- 2401_849559952024-05-21超赞的资源,感谢资源主分享,大家一起进步!onnx2024-12-25好的,欢迎收藏
- 天恩小朋友2024-04-25非常有用的资源,有一定的参考价值,受益匪浅,值得下载。onnx2024-12-25嗯嗯,谢谢认可和支持好评
![avatar](https://profile-avatar.csdnimg.cn/94727662d29d44fa8cff3f1e4cd744ab_deeplearning_.jpg!1)
onnx
- 粉丝: 1w+
- 资源: 5632
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助
![voice](https://csdnimg.cn/release/downloadcmsfe/public/img/voice.245cc511.png)
![center-task](https://csdnimg.cn/release/downloadcmsfe/public/img/center-task.c2eda91a.png)
最新资源
- YOLOv11边缘计算部署指南-TensorRT加速与NVIDIAJetson优化实践.pdf
- YOLOv11边缘计算部署指南-无人机巡检实时目标检测优化策略.pdf
- YOLOv11+SlowFast-工业生产中的高危动作识别系统开发.pdf
- YOLOv11船舶检测实战-MMShip数据集1.9%mAP提升秘籍.pdf
- YOLOv11边缘计算实战-无人机巡检中的输电线路缺陷实时检测.pdf
- YOLOv11多传感器融合-自动驾驶场景下的行人检测与轨迹预测.pdf
- YOLOv11多任务学习-病理切片细胞分类与病灶区域分割联合训练.pdf
- YOLOv11多任务优化-同时实现零售货架商品检测与OCR识别.pdf
- YOLOv11多任务实战-目标检测+距离测量+三维姿态估计一体化方案.pdf
- YOLOv11工业级缺陷检测实战-基于PCB板瑕疵识别的轻量化模型优化.pdf
- YOLOv11工业质检-高精度缺陷检测与实时分类解决方案.pdf
- YOLOv11工业缺陷检测实战-从模型训练到生产线部署全流程.pdf
- YOLOv11工业质检-零缺陷检测系统搭建与模型部署全攻略.pdf
- YOLOv11工业质检实战-基于表面缺陷检测的模型优化与部署指南.pdf
- YOLOv11跨平台部署实战-从TensorRT到ONNX的工业级优化.pdf
- YOLOv11模型轻量化-从TensorRT部署到边缘计算性能调优全攻略.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)
安全验证
文档复制为VIP权益,开通VIP直接复制
![dialog-icon](https://csdnimg.cn/release/downloadcmsfe/public/img/green-success.6a4acb44.png)