# Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
## Introduction
[ALGORITHM]
```latex
@inproceedings{deeplabv3plus2018,
title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
booktitle={ECCV},
year={2018}
}
```
## Results and models
Note:
`D-8`/`D-16` here corresponding to the output stride 8/16 setting for DeepLab series.
`MG-124` stands for multi-grid dilation in the last stage of ResNet.
### Cityscapes
| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
|------------|----------|-----------|--------:|----------|----------------|------:|--------------:|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DeepLabV3+ | R-50-D8 | 512x1024 | 40000 | 7.5 | 3.94 | 79.61 | 81.01 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json) |
| DeepLabV3+ | R-101-D8 | 512x1024 | 40000 | 11 | 2.60 | 80.21 | 81.82 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json) |
| DeepLabV3+ | R-50-D8 | 769x769 | 40000 | 8.5 | 1.72 | 78.97 | 80.46 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json) |
| DeepLabV3+ | R-101-D8 | 769x769 | 40000 | 12.5 | 1.15 | 79.46 | 80.50 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json) |
| DeepLabV3+ | R-18-D8 | 512x1024 | 80000 | 2.2 | 14.27 | 76.89 | 78.76 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json) |
| DeepLabV3+ | R-50-D8 | 512x1024 | 80000 | - | - | 80.09 | 81.13 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json) |
| DeepLabV3+ | R-101-D8 | 512x1024 | 80000 | - | - | 80.97 | 82.03 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json) |
| DeepLabV3+ | R-18-D8 | 769x769 | 80000 | 2.5 | 5.74 | 76.26 | 77.91 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json) |
| DeepLabV3+ | R-50-D8 | 769x769 | 80000 | - | - | 79.83 | 81.48 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json) |
| DeepLabV3+ | R-101-D8 | 769x769 | 80000 | - | - | 80.98 | 82.18 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405-a7573d20.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20200607_000405.log.json) |
| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 40000 | 5.8 | 7.48 | 79.09 | 80.36 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
| DeepLabV3+ | R-101-D16-MG124 | 512x1024 | 80000 | 9.9 | - | 79.90 | 81.33 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth) | [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
| DeepLabV3+ | R-18b-D8 | 512x1024 | 80000 | 2.1 | 14.95 | 75.87 | 77.52 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth) | [log](https://download.openmmlab.com/mmsegmentat
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
基于Pytorch框架,处理遥感影像分割任务.zip (643个子文件)
make.bat 760B
setup.cfg 427B
Dockerfile 750B
seg_demo.gif 930KB
.gitignore 2KB
.gitignore 1KB
pytest.ini 293B
MMSegmentation_Tutorial.ipynb 1.31MB
inference_demo.ipynb 540KB
LICENSE 11KB
Makefile 634B
config.md 20KB
README.md 18KB
README.md 17KB
README.md 15KB
README.md 15KB
README.md 15KB
README.md 14KB
README.md 11KB
README.md 10KB
README.md 10KB
README.md 10KB
README.md 10KB
README.md 10KB
README.md 10KB
README.md 10KB
customize_runtime.md 9KB
README.md 8KB
README.md 8KB
README.md 7KB
README.md 7KB
dataset_prepare.md 7KB
get_started.md 7KB
customize_models.md 6KB
README.md 6KB
changelog.md 6KB
README.md 6KB
model_zoo.md 6KB
README_zh-CN.md 6KB
README.md 6KB
inference.md 5KB
customize_datasets.md 5KB
data_pipeline.md 4KB
README.md 4KB
README.md 4KB
train.md 4KB
README.md 3KB
CODE_OF_CONDUCT.md 3KB
README.md 3KB
README.md 3KB
useful_tools.md 2KB
training_tricks.md 2KB
README.md 2KB
CONTRIBUTING.md 2KB
README.md 1KB
error-report.md 1KB
feature_request.md 700B
general_questions.md 109B
README.md 63B
demo.png 301KB
mmseg-logo.png 44KB
test_backbone.py 32KB
transforms.py 30KB
test_unet.py 30KB
test_heads.py 27KB
resnet.py 24KB
hrnet.py 21KB
unet.py 18KB
test_transform.py 17KB
point_head.py 14KB
fast_scnn.py 14KB
custom.py 14KB
cgnet.py 13KB
lovasz_loss.py 11KB
encoder_decoder.py 11KB
mobilenet_v3.py 10KB
base.py 10KB
resnest.py 10KB
test_dataset.py 10KB
formating.py 9KB
metrics.py 9KB
ann_head.py 9KB
decode_head.py 9KB
fpn.py 9KB
cityscapes.py 8KB
test.py 8KB
test_losses.py 8KB
psa_head.py 7KB
test_forward.py 7KB
cross_entropy_loss.py 7KB
class_names.py 7KB
inverted_residual.py 7KB
gather_models.py 7KB
test_loading.py 7KB
mobilenet_v2.py 7KB
pytorch2onnx.py 7KB
enc_head.py 7KB
test_eval_hook.py 7KB
test_segmentor.py 6KB
self_attention_block.py 6KB
共 643 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论
嵌入式大圣
- 粉丝: 4806
- 资源: 792
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于ARM的buck-boost拓扑双向DC-DC电源变器 同步BUCK电路和同步BOOST电路进行级联,采用高性能32位ARM 芯片构建数字电源,能够根据输入电压和输出电压的大小关系,实现
- 计算机组成原理试题集,个人学习整理,仅供参考
- php学习之美少女API随机调动图片源码+414张美少女黑丝图
- 计算机组成原理复习,个人学习整理,仅供参考
- 视频编码标准VVC中几何分区模式的技术综述与性能分析
- 计算机组成原理20套题试题
- 非常实用的Qt C++开发工具,它利用JSON配置文件实现了一个高度灵活和可扩展的菜单、工具栏以及状态栏自动生成系统 具体工作原理可以概括如下: JSON配置驱动:开发者可以通过编写JSON格式的配
- 计算机组成原理20套题答案
- SpringBoot 3 + Java21 + FastExcel 实现 excel 文档的读取与生成功能
- 模电课后习题答案11111111
- 电机测速实验(霍尔传感器++++)
- C++ Primer Plus-第6版-附录文件和源代码
- 蓝桥杯单片机霍尔传感器程序.zip
- 交错并联Boost PFC整流电路设计与仿真 simulink仿真 单路boost pfc THD分析 CCM电感电流连续模式 功率因素校正 芯片UCC28070 pdf详细介绍
- linux常用命令大全及说明
- 五子棋程序 附源代码,个人学习整理,仅供参考
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功