<div align="center">
<p>
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png"></a>
</p>
[English](README.md) | [ç®ä½ä¸æ](README.zh-CN.md)
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml"><img src="https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg" alt="YOLOv5 CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://bit.ly/yolov5-paperspace-notebook"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
YOLOv5 ð is the world's most loved vision AI, representing <a href="https://ultralytics.com">Ultralytics</a> open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
To request an Enterprise License please complete the form at <a href="https://ultralytics.com/license">Ultralytics Licensing</a>.
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
</div>
</div>
<br>
## <div align="center">YOLOv8 ð NEW</div>
We are thrilled to announce the launch of Ultralytics YOLOv8 ð, our NEW cutting-edge, state-of-the-art (SOTA) model
released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
```commandline
pip install ultralytics
```
<div align="center">
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com/yolov5) for full documentation on training, testing and deployment. See below for quickstart examples.
<details open>
<summary>Install</summary>
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
[**Python>=3.7.0**](https://www.python.org/) environment, including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
```bash
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
```
</details>
<details>
<summary>Inference</summary>
YOLOv5 [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s") # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg" # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
largest `--batch-size` possible, or pass `--batch-size -1` for
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
基于YOLOv5的课堂纪律检测系统.zip (225个子文件)
CITATION.cff 392B
setup.cfg 2KB
Dockerfile 3KB
Dockerfile 3KB
Dockerfile 821B
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
tutorial.ipynb 101KB
tutorial.ipynb 53KB
tutorial.ipynb 42KB
bus.jpg 476KB
zidane.jpg 165KB
LICENSE 34KB
README.md 39KB
README.zh-CN.md 38KB
README.md 11KB
README.md 11KB
README.md 11KB
README.md 11KB
README.md 10KB
CONTRIBUTING.md 5KB
README.md 2KB
README.md 2KB
README.md 96B
dataloaders.py 55KB
dataloaders.py 55KB
general.py 46KB
datasets.py 44KB
datasets_not_print.py 44KB
common.py 41KB
Mobile_phone_detection_window.py 36KB
Footwear_testing_window.py 36KB
general.py 34KB
train.py 34KB
train.py 33KB
train_server.py 32KB
export.py 31KB
common.py 27KB
window.py 27KB
tf.py 26KB
wandb_utils.py 25KB
plots.py 24KB
val.py 23KB
tf.py 20KB
plots.py 20KB
val.py 20KB
torch_utils.py 19KB
__init__.py 18KB
__init__.py 18KB
yolo.py 17KB
yolo.py 17KB
augmentations.py 17KB
__init__.py 16KB
train.py 16KB
predict.py 15KB
metrics.py 14KB
detect.py 14KB
dataloaders.py 14KB
dataloaders.py 14KB
metrics.py 13KB
torch_utils.py 13KB
augmentations.py 11KB
predict.py 11KB
loss.py 10KB
loss.py 9KB
loss.py 8KB
loss.py 8KB
wandb_utils.py 8KB
val.py 8KB
clearml_utils.py 8KB
clearml_utils.py 8KB
benchmarks.py 8KB
hubconf.py 8KB
autoanchor.py 7KB
autoanchor.py 7KB
__init__.py 7KB
hpo.py 6KB
hpo.py 6KB
plots.py 6KB
plots.py 6KB
ji.py 6KB
downloads.py 6KB
general.py 6KB
general.py 6KB
Home_Page.py 6KB
metrics.py 5KB
metrics.py 5KB
hpo.py 5KB
hpo.py 5KB
downloads.py 5KB
comet_utils.py 5KB
comet_utils.py 5KB
experimental.py 4KB
experimental.py 4KB
共 225 条
- 1
- 2
- 3
资源评论
普通网友
- 粉丝: 1126
- 资源: 5294
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【岗位说明】绩效考核主管岗位职责.doc
- 【岗位说明】客户关系主管岗位职责.doc
- 【岗位说明】客服经理岗位职责.doc
- 【岗位说明】内勤岗位职责.doc
- 【岗位说明】品管部职能说明.doc
- aWeb安全实践完整版推荐最新版本
- 【岗位说明】前台接待人员岗位职责说明书.doc
- 【岗位说明】前台职责说明.doc
- 【岗位说明】前台文员岗位说明书.doc
- 【岗位说明】人力资源总监职务描述.doc
- 【岗位说明】人事部岗位职责.doc
- 【岗位说明】人事管理岗位职责及要求.doc
- 【岗位说明】人事行政部岗位划分.doc
- 【岗位说明】人事行政经理岗位职责.doc
- 【岗位说明】人事行政部职责.doc
- 【岗位说明】人事行政部职能及岗位职责(非常实用).doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功