<div align="center">
# YOLOv8 Streamlit APP
<p>
<a align="center" href="https://ultralytics.com/yolov8" target="_blank">
<img width="50%" src="pic_bed/banner-yolov8.png"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
</div>
## Introduction
This repository supply a user-friendly interactive interface for [YOLOv8](https://github.com/ultralytics/ultralytics) and the interface is powered by [Streamlit](https://github.com/streamlit/streamlit). It could serve as a resource for future reference while working on your own projects.
## Features
- Feature1: Object detection task.
- Feature2: Multiple detection models. `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Feature3: Multiple input formats. `Image`, `Video`, `Webcam`
## Interactive Interface
### Image Input Interface
![image_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/image_input_demo.png)
### Video Input Interface
![video_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/video_input_demo.png)
### Webcam Input Interface
![webcam_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/webcam_input_demo.png)
## Installation
### Create a new conda environment
```commandline
# create
conda create -n yolov8-streamlit python=3.8 -y
# activate
conda activate yolov8-streamlit
```
### Clone repository
```commandline
git clone https://github.com/JackDance/YOLOv8-streamlit-app
```
### Install packages
```commandline
# yolov8 dependencies
pip install ultralytics
# Streamlit dependencies
pip install streamlit
```
### Download Pre-trained YOLOv8 Detection Weights
Create a directory named `weights` and create a subdirectory named `detection` and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
## Run
```commandline
streamlit run app.py
```
Then will start the Streamlit server and open your web browser to the default Streamlit page automatically.
## TODO List
- Add `Tracking` capability.
- Add `Classification` capability.
- Add `Pose estimation` capability.
***
If you also like this project, you may wish to give a `star` (^.^)✨ . If any questions, please raise `issue`~
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov8-firedetection的火灾探测部署.zip (10个子文件)
yolov8_firedetection-main
utils.py 5KB
app.py 2KB
weights
detection
best_train.pt 21.49MB
requirements.txt 111B
.gitignore 54B
__pycache__
utils.cpython-310.pyc 4KB
config.cpython-310.pyc 945B
README.md 5KB
config.py 1KB
一个基于yolov8的火灾检测部署_yolov8_firedetection
项目内附说明
如果解压失败请用ara软件解压.txt 42B
共 10 条
- 1
资源评论
2401_87496566
- 粉丝: 1105
- 资源: 5285
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功