<div align="center">
# YOLOv8 Streamlit APP
<p>
<a align="center" href="https://ultralytics.com/yolov8" target="_blank">
<img width="50%" src="pic_bed/banner-yolov8.png"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
</div>
## Introduction
This repository supply a user-friendly interactive interface for [YOLOv8](https://github.com/ultralytics/ultralytics) and the interface is powered by [Streamlit](https://github.com/streamlit/streamlit). It could serve as a resource for future reference while working on your own projects.
## Features
- Feature1: Object detection task.
- Feature2: Multiple detection models. `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Feature3: Multiple input formats. `Image`, `Video`, `Webcam`
## Interactive Interface
### Image Input Interface

### Video Input Interface

### Webcam Input Interface

## Installation
### Create a new conda environment
```commandline
# create
conda create -n yolov8-streamlit python=3.8 -y
# activate
conda activate yolov8-streamlit
```
### Clone repository
```commandline
git clone https://github.com/JackDance/YOLOv8-streamlit-app
```
### Install packages
```commandline
# yolov8 dependencies
pip install ultralytics
# Streamlit dependencies
pip install streamlit
```
### Download Pre-trained YOLOv8 Detection Weights
Create a directory named `weights` and create a subdirectory named `detection` and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
## Run
```commandline
streamlit run app.py
```
Then will start the Streamlit server and open your web browser to the default Streamlit page automatically.
## TODO List
- Add `Tracking` capability.
- Add `Classification` capability.
- Add `Pose estimation` capability.
***
If you also like this project, you may wish to give a `star` (^.^)✨ . If any questions, please raise `issue`~

普通网友
- 粉丝: 1124
- 资源: 5294
最新资源
- 使用Simulink搭建稳定且效果显著的有源滤波器模型:操作视频和报告资料齐备,Simulink有源滤波器模型搭建教程:稳定运行,效果显著的滤波实践,有源滤波器matlab simulink 采用si
- 极化偏转超表面之四参数化表征:Comsol求解斯托克斯参数、线偏振度、圆偏振度、偏振方位角与椭圆率角之高效方法与偏振转换效率评估,基于Comsol仿真分析的极化偏转超表面参数研究:四个斯托克斯参数与线
- brainyai-plasmo@0.86.1-内网环境「sharp问题」
- 基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型技术研究与应用展示,基于模块化多电平换流器(MMC)的离网逆变工况双闭环定交流电压仿真模型设计与优化分析,模块化多电平流器(MMC
- 最新PHP短视频流量社群掘金系统源码
- 精品推荐-AUTOSAR汽车应用软件架构开发最佳实践教程合集.zip
- 基于SDE控件实现的电子病历H5
- 【javaWeb毕业设计全套】javaWeb传智播客网上书城项目源码(设计以及实现论文)
- 《发动机罩系统设计全解析:流程、断面设计、人机布置与包边涂胶要求详解》,《发动机罩系统设计全解析:流程、断面设计、人机布置与包边涂胶要求详解》,发动机罩系统设计指南讲述了发动机罩系统设计流程,典型断面
- 毕业设计javaweb物流配货项目源码
- 基于Matlab 2021a双三相永磁同步风力发电系统控制策略的仿真与模型构建:包含变流器开关控制与PWM技术的细节、双三相电机高效性与优越性及其对电网的稳定调节、机侧控制策略研究与应用,双三相永磁同
- 课堂行为数据集,使用labelimg手动标注的数据集,包含图片文件和xml文件,类别有、低头写字、低头看书、抬头听课、转头、举手
- 地理分析模型的面向服务包装系统的架构与实现
- POSIX标准文档,POSIX(Portable Operating System Interface)是一组标准,旨在确保不同操作系统之间的兼容性和可移植性
- 毕业设计javaWeb物资管理系统项目源码
- 基于COMSOL模拟的甲烷重整器模型:融合重整与水汽交换反应的内部加热管顺逆流加热系统研究,基于COMSOL模拟的甲烷重整器模型:融合重整与水汽交换反应的内部加热管顺逆流加热系统研究,甲烷重整器COM
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


