<div align="center">
# YOLOv8 Streamlit APP
<p>
<a align="center" href="https://ultralytics.com/yolov8" target="_blank">
<img width="50%" src="pic_bed/banner-yolov8.png"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
</div>
## Introduction
This repository supply a user-friendly interactive interface for [YOLOv8](https://github.com/ultralytics/ultralytics) and the interface is powered by [Streamlit](https://github.com/streamlit/streamlit). It could serve as a resource for future reference while working on your own projects.
## Features
- Feature1: Object detection task.
- Feature2: Multiple detection models. `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Feature3: Multiple input formats. `Image`, `Video`, `Webcam`
## Interactive Interface
### Image Input Interface
![image_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/image_input_demo.png)
### Video Input Interface
![video_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/video_input_demo.png)
### Webcam Input Interface
![webcam_input_demo](https://github.com/JackDance/YOLOv8-streamlit-app/blob/master/pic_bed/webcam_input_demo.png)
## Installation
### Create a new conda environment
```commandline
# create
conda create -n yolov8-streamlit python=3.8 -y
# activate
conda activate yolov8-streamlit
```
### Clone repository
```commandline
git clone https://github.com/JackDance/YOLOv8-streamlit-app
```
### Install packages
```commandline
# yolov8 dependencies
pip install ultralytics
# Streamlit dependencies
pip install streamlit
```
### Download Pre-trained YOLOv8 Detection Weights
Create a directory named `weights` and create a subdirectory named `detection` and save the downloaded YOLOv8 object detection weights inside this directory. The weight files can be downloaded from the table below.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
## Run
```commandline
streamlit run app.py
```
Then will start the Streamlit server and open your web browser to the default Streamlit page automatically.
## TODO List
- Add `Tracking` capability.
- Add `Classification` capability.
- Add `Pose estimation` capability.
***
If you also like this project, you may wish to give a `star` (^.^)✨ . If any questions, please raise `issue`~
普通网友
- 粉丝: 1126
- 资源: 5294
最新资源
- 使用纯C语言编写的计算矩阵初等行变算法实现 算法比较完善,可以支持分数输入以及运算 懂的人自然知道有多方便(尽管MATLAB同样可以实现,此算法的优势主要引入分数运算,纯手撸,很舒服) 效果看图:
- stm32 FX3U V10源码 方案 PCB +原理图 1.基于stm32f103vet6 2. 以太网w5500 3.带can总线 4. 4路高速光耦输入 5. 24路低速光耦输入
- Matlab Simulink 平台 5WM海上永磁风电直驱+1200V风电并网(风速采用美国国家能源实验室真实数据模拟10S风速波动情况) 机侧与网侧均采用矢量控制,混合储能采用超级电容与锂电池,采
- 基于MATLAB的BPSK或DPSK调制解调音频通信系统仿真设计,通信原理实践 含完整工程和详细报告文档 部分仿真结果如图所示:
- matlab simulink车辆悬架建模仿真
- 仓库出货用连续式升降机sw18可编辑全套技术资料100%好用.zip
- 三菱2轴FX3U程序案例,XZ两轴,包含轴点动,回零,相对与绝对定位,只要弄明白这个程序,就可以非常了解整个项目的程序如何去编写,从哪里开始下手,,程序流程清晰明了
- 计算机学习-左耳,学习基础原理
- codeblocks-20.03mingw-setup 最新版本
- 西门子1200PLC控制加KPT1200触摸屏,污水处理厂自控项目实例,含一台200SMART200加触摸屏泵站程序画面 内涵全套电气控制图纸 改建成已运行项目,所有应用均经过实际验证 应用包括:
- 三菱R系列PLC程序 全部采用ST语言编写,内部使用函数块和结构体,程序思路清晰,简洁明了 通过结构体和函数块的使用,可以使您在程序编写水平得到很大提高 ST语言是PLC后续的主流语言,是日后编程
- buckboost电路 基于soc 锂电池均衡simulink仿真 主动均衡 四节电池 battery模型
- 大型语言模型:从理论到实践的深度解析及其应用案例
- 无功功率控制对并网变器变流器的暂态稳定分析(文章完全浮现) 关键词:下垂控制,大信号干扰,无功功率控制,暂态稳定,电压源型变器
- 毕业设计Python基于双目立体视觉的图像匹配与测距源码+全部资料(高分项目)
- 昆仑通态触摸屏控制ABB变频器
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈