# EfficientDet: Scalable and Efficient Object Detection
## Introduction
Here is our pytorch implementation of the model described in the paper **EfficientDet: Scalable and Efficient Object Detection** [paper](https://arxiv.org/abs/1911.09070) (*Note*: We also provide pre-trained weights, which you could see at ./trained_models)
<p align="center">
<img src="demo/video.gif"><br/>
<i>An example of our model's output.</i>
</p>
## Datasets
| Dataset | Classes | #Train images | #Validation images |
|------------------------|:---------:|:-----------------------:|:----------------------------:|
| COCO2017 | 80 | 118k | 5k |
Create a data folder under the repository,
```
cd {repo_root}
mkdir data
```
- **COCO**:
Download the coco images and annotations from [coco website](http://cocodataset.org/#download). Make sure to put the files as the following structure:
```
COCO
├── annotations
│ ├── instances_train2017.json
│ └── instances_val2017.json
│── images
├── train2017
└── val2017
```
## How to use our code
With our code, you can:
* **Train your model** by running **python train.py**
* **Evaluate mAP for COCO dataset** by running **python mAP_evaluation.py**
* **Test your model for COCO dataset** by running **python test_dataset.py --pretrained_model path/to/trained_model**
* **Test your model for video** by running **python test_video.py --pretrained_model path/to/trained_model --input path/to/input/file --output path/to/output/file**
## Experiments
We trained our model by using 3 NVIDIA GTX 1080Ti. Below is mAP (mean average precision) for COCO val2017 dataset
| Average Precision | IoU=0.50:0.95 | area= all | maxDets=100 | 0.314 |
|-----------------------|:-------------------:|:-----------------:|:-----------------:|:-------------:|
| Average Precision | IoU=0.50 | area= all | maxDets=100 | 0.461 |
| Average Precision | IoU=0.75 | area= all | maxDets=100 | 0.343 |
| Average Precision | IoU=0.50:0.95 | area= small | maxDets=100 | 0.093 |
| Average Precision | IoU=0.50:0.95 | area= medium | maxDets=100 | 0.358 |
| Average Precision | IoU=0.50:0.95 | area= large | maxDets=100 | 0.517 |
| Average Recall | IoU=0.50:0.95 | area= all | maxDets=1 | 0.268 |
| Average Recall | IoU=0.50:0.95 | area= all | maxDets=10 | 0.382 |
| Average Recall | IoU=0.50:0.95 | area= all | maxDets=100 | 0.403 |
| Average Recall | IoU=0.50:0.95 | area= small | maxDets=100 | 0.117 |
| Average Recall | IoU=0.50:0.95 | area= medium | maxDets=100 | 0.486 |
| Average Recall | IoU=0.50:0.95 | area= large | maxDets=100 | 0.625 |
## Results
Some predictions are shown below:
<img src="demo/1.jpg" width="280"> <img src="demo/2.jpg" width="280"> <img src="demo/3.jpg" width="280">
<img src="demo/4.jpg" width="280"> <img src="demo/5.jpg" width="280"> <img src="demo/6.jpg" width="280">
<img src="demo/7.jpg" width="280"> <img src="demo/8.jpg" width="280"> <img src="demo/9.jpg" width="280">
## Requirements
* **python 3.6**
* **pytorch 1.2**
* **opencv (cv2)**
* **tensorboard**
* **tensorboardX** (This library could be skipped if you do not use SummaryWriter)
* **pycocotools**
* **efficientnet_pytorch**
## References
- Mingxing Tan, Ruoming Pang, Quoc V. Le. "EfficientDet: Scalable and Efficient Object Detection." [EfficientDet](https://arxiv.org/abs/1911.09070).
- Our implementation borrows some parts from [RetinaNet.Pytorch](https://github.com/yhenon/pytorch-retinanet)
## Citation
@article{EfficientDetSignatrix,
Author = {Signatrix GmbH},
Title = {A Pytorch Implementation of EfficientDet Object Detection},
Journal = {https://github.com/signatrix/efficientdet},
Year = {2020}
}
普通网友
- 粉丝: 0
- 资源: 512
最新资源
- 毕设和企业适用springboot企业内部数据分析平台类及机器学习平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及全生命周期管理平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及汽车信息管理平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及视频会议系统源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及停车管理系统源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及数据存储平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及信息安全管理系统源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及文化创意平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及虚拟银行平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及用户反馈平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及医疗诊断系统源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及用户体验优化平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及运动赛事管理平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及职业技能培训平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及智慧社区管理平台源码+论文+视频.zip
- 毕设和企业适用springboot企业安全管理系统类及资产管理平台源码+论文+视频.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈