没有合适的资源?快使用搜索试试~ 我知道了~
Applet_2023-9-5_169387541302835.pdf
试读
9页
需积分: 0 1 下载量 6 浏览量
更新于2023-09-21
收藏 5.96MB PDF 举报
标题中的“Applet”可能指的是一个应用程序小程序,通常在网页或特定平台上运行,而文件名中的数字和日期可能表示该文档的创建或更新时间。然而,由于没有提供具体的内容,我将主要根据描述来讨论相关的知识点。
描述提到了“principal odor map”(主嗅觉地图)和“olfactory perception”(嗅觉感知),这是神经科学领域的一个关键问题。在嗅觉系统中,如何将化学物质的分子结构映射到我们感知到的气味特征,即所谓的“odor quality”(气味品质),是一个尚未完全解决的挑战。在这个研究中,研究人员使用了图神经网络(graph neural networks,GNNs)来构建一个这样的主嗅觉地图(POM)。
图神经网络是一种深度学习模型,特别适合处理非结构化数据,如复杂分子的图结构。在本研究中,GNNs被用来学习和捕捉化学结构与嗅觉感知之间的关系。模型经过训练后,能够预测新分子的气味品质,且预测效果与人类评价员相当。这表明POM成功地编码了一种通用的化学结构-气味关系图。
研究中提到的“prospective validation set”是指一组未在训练集中出现的新样本,用于检验模型的泛化能力。在验证集上的表现证明了模型的有效性,其生成的气味描述与训练小组的平均描述更接近。
此外,通过应用简单的、可解释的、理论基础的变换,POM在其他几个气味预测任务上超越了传统的化学信息学模型,这进一步证明了POM在捕捉结构-气味关系方面的优越性。这些任务可能包括预测不同化学结构的气味强度、识别类似气味的分子等。
Sell’s triplets的例子说明了嗅觉感知与分子结构之间非线性和复杂的关联,这三个分子尽管化学结构相似,但可能导致截然不同的嗅觉体验。这种现象展示了嗅觉编码的复杂性,与视觉或听觉系统的简单线性映射不同。
这个研究为理解嗅觉感知提供了重要的工具,POM作为一种数字化的方法,有望推动嗅觉科学的进步,未来可能应用于气味的数字化和预测,甚至可能改变我们理解和利用气味的方式,比如在香水、食品调味和环境嗅觉设计等领域。
NEUROSCIENCE
A principal odor map unifies diverse tasks in
olfactory perception
Brian K. Lee
1
†, Emily J. Mayhew
2,3
†, Benjamin Sanchez-Lengeling
1
, Jennifer N. Wei
1
,
Wesley W. Qian
4,1,5
, Kelsie A. Little
2
, Matthew Andres
2
, Britney B. Nguyen
2
, Theresa Moloy
2
,
Jacob Yasonik
4,1
,JaneK.Parker
6
, Richard C. Gerkin
4,1,7
, Joel D. Mainland
2,8
*, Alexander B. Wiltschko
4,1
*
Mapping molecular structure to odor perception is a key challenge in olfaction. We used graph
neural networks to generate a principal odor map (POM) that preserves perceptual relationships and
enables odor quality prediction for previously uncharacterized odorants. The model was as reliable as a
human in describing odor quality: On a prospective validation set of 400 out-of-sample odorants, the
model-generated odor profile more closely matched the trained panel mean than did the median
panelist. By applying simple, interpretable, theoretically rooted transformations, the POM outperformed
chemoinformatic models on several other odor prediction tasks, indicating that the POM successfully
encoded a generalized map of structure-odor relationships. This approach broadly enables odor
prediction and paves the way toward digitizing odors.
A
fundamental problem in neurosci ence
is mapping the physical properties of a
stimulus to perceptual characterist ics. In
vision, wavelength maps to color; in audi-
tion, frequency maps to pitch. By con-
trast, the mapping from chemical structures to
olfactory percepts is poorly understood. Detailed
and modality-specific maps such as the Com-
mission Internationale de l’Elcairage (CIE) color
space (1) and Fourier space (2) led to a bet ter
understanding of visual and auditory coding.
Similarly, to better understand olfactory cod-
ing, the field of olfaction needs a better map.
Pitch i ncreases monotonically with frequen-
cy. By contrast, the relationship between odor
perceptandodorantstructureisriddledwith
discontinuities; this is exemplified by Sell’s
triplets (3), which are trios of molecules in
which the structurally similar pair is not the
perceptually similar pair (Fig. 1A). These dis-
continuities in the structure-odor relation-
ship suggest that standard chemoinformatic
representations of molecules—functional group
counts, physical properties, molecular finger-
prints, and so on—that have been used in re-
cent odor modeling work (4–6)areinadequate
to map odor space.
The principal odor map represents perceptual
distances and hierarchies
To generate odor-relev ant representations of
molecules, we constructed a message passing
neural network (MPNN) (7), which is a spe-
cific type of graph neural network (GNN) (8),
to map chemical structures to odor percepts.
Each molecule was represented as a graph,
with each atom described by its valence, de-
gree, hydrogen count, hybridization, formal
charge, and atomic number. Each bond was
described by its degree, its aromaticity, and
whether it is in a ring. Unlike traditional fin-
gerprinting techniques (9), which assign equal
weight to all molecular fragments within a
set bond radius, a GNN can optimize fragment
weights for odor-specific applications. Neural
networks have unlocked predictive modeling
breakthroughs in diverse perceptual domains
[e.g., natural images (10), faces (11), and sounds
(12)] and naturally produce intermediate rep-
resentations of their input data that are func-
ti onally high-dimensional, data-driven maps.
We used the final layer of the GNN (henceforth,
“our model”) to directly predict odor qualities,
and the penultimate layer of the model as a prin-
cipal odor map (POM). The POM (i) faithfully
represented known perceptual hierarchies and
distances, (ii) extended to out-of-sample (here-
after, “novel”)odorants,(iii)wasrobusttodis-
continuities in structure-odor distances, and
(iv) generalized to other olfactory tasks.
We curated a reference dataset of ~5000 mol-
ecules, each described by multiple odor labels
(e.g., creamy, grassy), by combining the Good
Scents (13) and Leffingwell & Associates (14)
(GS-LF) flavor and fragrance databases (Fig.
1B). To train our model, we optimized model
parameters with a weighted-cross entropy loss
over 150 epochs using Adam (15)withalearn-
ing rate decaying from 5 × 10
−4
to 1 × 10
−5
and
a batch size of 128. The GS-LF dataset was split
80/20 training/test, and the 80% training set
further subdivided into five cross-validation
splits. These cross-validation splits were used
to optimize hyperparameters using Vizier (16),
a Bayesian optimization algorithm, by tuning
across 1000 trials. Details about model archi-
tecture and hyperparameters are given in
the supplementary methods. When properly
hyperparameter-tuned, performance was found
to be robust across many model architectures.
We present results for the model with the high-
est mean area under the receiver operating
characteristic curve (AUROC) on the cross-
validation set (AUROC = 0.89) (17).
How does the POM compare to perceptual
odor maps and conventional structure-based
maps of odorants? Empirical perceptual space
(Fig. 1D) intuitively represents perceptual dis-
tances (e.g., two molecules that smell of jas-
mine should be nearer to each other than to a
beefy-smelling molecule) and hierarchies (e.g.,
jasmine and lavender are subtypes of the floral
odor family). We show that whereas this struc-
ture is lost in Morgan fingerprint-based maps
of odorant space (Fig. 1E), the POM preserves
relative perceptual distances and hierarchies
(Fig. 1F and figs. S1 to S3).
Our model outperformed the median panelist
on the prospective validation task
To test whether our model extends to novel
odorants, we designed a prospective valida-
tion challenge (18)inwhichwebenchmarked
model predictive performance against indi-
vidual human raters. In olfaction, no reliable
instrumental method of measuring odor percep-
tion exists, and trained human sensory panels
are the gold standard for odor characterization
(19). Odor perception is variable across indi-
viduals (20, 21), but group-averaged odor rat-
ings are stable across repeated measurements
(22) and represent our best avenue to estab-
lish the ground-truth odor character for novel
odorants. We trained a cohort of subjects to
describe their perception of odorants using
the rate-all-that-apply method (RATA) and a
55-word odor lexicon. During training sessions,
each term in the lexicon was paired with visual
and odor references (fig. S4 and table S1). Only
subjects that met performance standards on
the pretest of 20 common odorants (data S2;
individual test-retest correlati on R > 0.35; rea-
sonable label selection for common odorants)
were invited to join the panel.
To avoid trivial test cases, we applied the fol-
lowing selection criteria for the set of 400 novel
odorants: (i) molecules must be structurally
distinct from each other (fig. S5), (ii) mole-
cules should cover the widest gamut of odor
labels (data S1), and (iii) molecules must be
structurally or perceptually distinct from any
training example (e.g., Fig. 1A and data S1).
Our prospective validation set consisted of 55–
odor label RATA data for 400 novel, intensity-
balanced odorants generated by our cohort of
≥15 panelists (two replicates). Summary sta-
tistics and the correlation structure of the hu-
man perceptual data are presented in figs. S6
to S8. Our panel’s mean ratings were highly
RESEARCH
Lee et al., Science 381, 999–1006 (2023) 1 September 2023 1of8
1
Google Research, Brain Team, Cambridge, MA, USA.
2
Monell
Chemical Senses Center, Philadelphia, PA, USA.
3
Department of
Food Science and Human Nutrition, Michigan State University,
East Lansing, MI, USA.
4
Osmo Labs, PBC, Cambridge, MA,
USA.
5
Department of Computer Science, University of Illinois at
Urbana-Champaign, Champaign, IL, USA.
6
Department of Food
and Nutritional Sciences, University of Reading, Reading,
Berkshire, UK.
7
School of Life Sciences, Arizona State
University, Tempe, AZ, USA.
8
Department of Neuroscience,
University of Pennsylvania, Philadelphia, PA, USA.
*Corresponding author. Email: jmainland@monell.org (J.D.M.);
alex@osmo.ai (A.B.W.)
†These authors contributed equally to this work.
Downloaded from https://www.science.org at University of Toronto on September 04, 2023
下载后可阅读完整内容,剩余8页未读,立即下载
资源推荐
资源评论
104 浏览量
193 浏览量
145 浏览量
2009-10-20 上传
152 浏览量
5星 · 资源好评率100%
102 浏览量
2022-07-11 上传
182 浏览量
2020-06-29 上传
152 浏览量
2021-10-07 上传
2022-05-05 上传
2015-06-13 上传
2022-02-28 上传
2021-08-20 上传
5星 · 资源好评率100%
188 浏览量
5星 · 资源好评率100%
118 浏览量
2018-11-15 上传
180 浏览量
2021-09-14 上传
2011-10-18 上传
103 浏览量
2021-08-12 上传
5星 · 资源好评率100%
193 浏览量
2021-09-30 上传
193 浏览量
资源评论
2301_79894147
- 粉丝: 0
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 三相光伏PV并网逆变器MATLAB仿真 模型内容: 1.光伏+MPPT控制(boost+三相桥式逆变) 2.坐标变+锁相环+dq功率控制+解耦控制+电流内环电压外环控制+spwm调制 3.LCL滤波
- 3H桥式动态电压恢复器仿真模型 3H桥DVR,三个单相逆变器组合的 串联电压补偿设备仿真模型 可实现三相电压不对称跌落补偿 波形图从上到下依次是电网电压,DVR补偿电压,负载电压
- 刀疤修复版公益系列分享.apk.1
- 1模型简介:COMSOL Multiphysics生成粗糙裂隙,可考虑分形系数 2案例内容:数值模型,matlab数据 3模型特色:额外赠送点云法生成粗糙裂隙视频+代码 注:模型简单
- foc滑膜观测器(MRAS)模型参考自适应系统,matlab模型,效果还不错,现在出这个模型,matlab 的版本是2014以上 电机控制仿真 电机控制算法MRAS观测器
- 西门子S7-1500暖通空调制药厂洁净空调PLC程序案例,硬件采用西门子1500CPU+ET200SP接口IO模块,HMI采用西门子触摸屏 具体为制药厂BMS(洁净空调自控系统)医药洁净室程序,程
- 电子锁自动组装机(sw14可编辑+工程图)全套技术资料100%好用.zip
- Python爬取国家水稻信息进行数据分析可视化
- 堆高车sw13全套技术资料100%好用.zip
- 基于matlab实现的火焰图像识别源码+文档说明.zip
- 工业机器人实训室step全套技术资料100%好用.zip
- 永磁同步电机三闭环控制+转动惯量辨识策略 不足: 转动惯量辨识精度不高,启动转速抖动 含有对应的lunwen文献
- 基于Java+Springboot+Vue的WMS仓库管理系统+微信小程序源码+数据库+文档说明
- 基于java的框架的PP借贷网站开题报告.docx
- 碳化硅MOSFET在充电桩电源模块的应用及其性能评测
- 基于java的框架的漫画阅读系统的开题报告.docx
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功