<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
<项目介绍> 这是福州大学软工C班的软工大作业,共包含3个部分,将VOC数据集转换为yolo格式,yolov5源代码以及训练完成的数据集、最后报告的生成。 - 不懂运行,下载完可以私聊问,可远程教学 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 --------
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov5实现的垃圾分类质量检测系统以及训练完成的数据集+源代码+文档说明(软工大作业) (2000个子文件)
2023年-Nov-27-Mon-21时-16分-27秒厨余类垃圾分类质量检测结果.docx 1.25MB
2023年-Nov-27-Mon-21时-19分-03秒厨余类垃圾分类质量检测结果.docx 1.25MB
2023年-Nov-27-Mon-21时-06分-17秒厨余类垃圾分类质量检测结果.docx 1.25MB
2023年-Nov-27-Mon-21时-55分-47秒厨余类垃圾分类质量检测结果.docx 1.08MB
2023年-Nov-27-Mon-21时-38分-29秒厨余类垃圾分类质量检测结果.docx 659KB
2023年-Nov-27-Mon-21时-45分-21秒厨余类垃圾分类质量检测结果.docx 565KB
2023年-Nov-27-Mon-20时-15分-36秒厨余类垃圾分类质量检测结果.docx 528KB
2023年-Nov-27-Mon-21时-54分-16秒厨余类垃圾分类质量检测结果.docx 512KB
2023年-Nov-27-Mon-22时-54分-41秒其他类垃圾分类质量检测结果.docx 36KB
README.md 14KB
README.md 10KB
README.md 2KB
README.md 1KB
微信图片_20231001212011.txt 503B
img_13683.txt 340B
img_1263.txt 330B
img_1209.txt 307B
img_15968.txt 265B
img_15555.txt 263B
img_14663.txt 226B
img_15484.txt 224B
img_15721.txt 222B
img_13513.txt 216B
img_15568.txt 193B
img_13674.txt 190B
img_14846.txt 190B
img_15530.txt 190B
img_15591.txt 190B
img_13178.txt 189B
img_16341.txt 189B
img_15022.txt 189B
img_13176.txt 189B
img_1416.txt 186B
img_13486.txt 183B
img_12649.txt 181B
img_12465.txt 170B
img_16383.txt 169B
img_12668.txt 168B
img_1217.txt 167B
img_13477.txt 167B
img_13480.txt 165B
img_13304.txt 164B
img_16328.txt 154B
img_15609.txt 154B
img_10451.txt 153B
img_15754.txt 153B
img_14547.txt 153B
img_160.txt 152B
img_13222.txt 152B
img_13248.txt 152B
img_1179.txt 152B
img_10690.txt 151B
img_12371.txt 151B
img_13366.txt 151B
img_13895.txt 151B
img_1219.txt 151B
img_11506.txt 151B
img_13221.txt 151B
img_15599.txt 150B
img_13351.txt 150B
img_13679.txt 150B
img_13102.txt 149B
img_1527.txt 147B
img_13262.txt 147B
img_1392.txt 147B
img_13485.txt 141B
img_13595.txt 139B
img_11992.txt 136B
img_12625.txt 135B
img_1549.txt 134B
img_13349.txt 133B
img_13050.txt 133B
img_13294.txt 131B
img_13808.txt 130B
img_12962.txt 127B
img_13804.txt 125B
img_13335.txt 123B
img_13032.txt 120B
img_15740.txt 118B
img_12762.txt 116B
img_16009.txt 115B
img_14568.txt 115B
img_15988.txt 115B
img_1297.txt 115B
img_12763.txt 115B
img_10683.txt 115B
img_1043.txt 115B
img_15637.txt 115B
img_1085.txt 115B
img_10680.txt 115B
img_10764.txt 115B
img_1588.txt 114B
img_12770.txt 114B
img_1551.txt 114B
img_1389.txt 114B
img_1475.txt 114B
img_13587.txt 114B
img_12604.txt 114B
img_1266.txt 114B
img_13143.txt 114B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
- 天恩小朋友2024-05-28发现一个超赞的资源,赶紧学习起来,大家一起进步,支持!
- ���4322024-07-10非常有用的资源,有一定的参考价值,受益匪浅,值得下载。
奋斗奋斗再奋斗的ajie
- 粉丝: 1204
- 资源: 2908
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功