<div align="center">
<p>
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://codecov.io/github/ultralytics/ultralytics"><img src="https://codecov.io/github/ultralytics/ultralytics/branch/main/graph/badge.svg?token=HHW7IIVFVY" alt="Ultralytics Code Coverage"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.instagram.com/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="Ultralytics Instagram"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco8.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") #
没有合适的资源?快使用搜索试试~ 我知道了~
YOLO模型快速部署和一键运行,用于人脸检测,提供best.pt和yolov8n.pt预训练模型
共635个文件
md:281个
py:157个
jpg:85个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 1 下载量 116 浏览量
2024-06-19
16:35:51
上传
评论
收藏 80.78MB ZIP 举报
温馨提示
专注于YOLO模型部署的项目,提供"best.pt"和"yolov8n.pt"预训练模型,实现快速部署和一键运行。本项目主要应用于人脸检测 软件架构 YOLOv8预训练模型:包括"best.pt"和"yolov8n.pt"模型,用于人脸检测。 一键运行脚本:方便用户快速部署和测试模型。 安装教程 克隆本项目到本地。 安装Python环境,推荐使用Anaconda。 运行模型:用conda,运行01_yolov8n_图片视频保存.ipynb 环境推荐 win10 conda python3.8 python库: "from ultralytics import YOLO\n", "import json\n", "import time\n", "import os\n", "import glob\n",
资源推荐
资源详情
资源评论
收起资源包目录
YOLO模型快速部署和一键运行,用于人脸检测,提供best.pt和yolov8n.pt预训练模型 (635个子文件)
main.cc 10KB
CITATION.cff 764B
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 2KB
Dockerfile 4KB
Dockerfile-arm64 3KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson 3KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
.gitignore 51B
inference.h 2KB
inference.h 2KB
comments.html 2KB
main.html 904B
source-file.html 858B
favicon.ico 9KB
01_yolov8n_图片视频保存.ipynb 1.6MB
training.ipynb 131KB
predictions.ipynb 129KB
01_yolov8n_图片视频保存-checkpoint.ipynb 48KB
tutorial.ipynb 36KB
object_tracking.ipynb 13KB
object_counting.ipynb 13KB
heatmaps.ipynb 11KB
hub.ipynb 5KB
000000000061_detected.jpg 242KB
04_视频_Snipaste_2024-06-08_01-47-14.jpg 151KB
000000000036_detected.jpg 131KB
000000000042_detected.jpg 111KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013028.jpg 109KB
000000000061.jpg 97KB
000000000061.jpg 97KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014713.jpg 91KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013040.jpg 90KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014726.jpg 83KB
000000000049_detected.jpg 82KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013019.jpg 80KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014722.jpg 80KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013020.jpg 79KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013031.jpg 79KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013032.jpg 78KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014714.jpg 77KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014734.jpg 71KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013026.jpg 69KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014715.jpg 68KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013025.jpg 68KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013027.jpg 67KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014735.jpg 66KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013022.jpg 66KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013042.jpg 65KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014724.jpg 65KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014717.jpg 64KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013029.jpg 63KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013043.jpg 63KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014723.jpg 59KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013037.jpg 58KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014712.jpg 58KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013035.jpg 57KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014731.jpg 56KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014729.jpg 56KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013041.jpg 56KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014716.jpg 56KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014709.jpg 55KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013014.jpg 55KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013024.jpg 54KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014721.jpg 54KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013030.jpg 54KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013018.jpg 52KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014718.jpg 52KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014737.jpg 52KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013036.jpg 52KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014719.jpg 52KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014720.jpg 52KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013012.jpg 51KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013044.jpg 51KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013038.jpg 51KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014727.jpg 50KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014710.jpg 50KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014728.jpg 50KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014725.jpg 50KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013033.jpg 50KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014707.jpg 50KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013034.jpg 49KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013015.jpg 48KB
000000000036.jpg 48KB
000000000036.jpg 48KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014732.jpg 48KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014736.jpg 48KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013017.jpg 47KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013039.jpg 47KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608013011.jpg 46KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014733.jpg 44KB
【4K收藏级画质】霉霉神级《Love Story》现场!!!_detected_20240608014730.jpg 44KB
共 635 条
- 1
- 2
- 3
- 4
- 5
- 6
- 7
资源评论
- 丹尼尔001号2024-10-29感谢大佬分享的资源,对我启发很大,给了我新的灵感。
程序员柳
- 粉丝: 8305
- 资源: 1469
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 毕设和企业适用springboot社交应用平台类及金融数据分析平台源码+论文+视频.zip
- 毕设和企业适用springboot社交应用平台类及交通信息平台源码+论文+视频.zip
- 毕设和企业适用springboot人力资源管理类及用户数据分析平台源码+论文+视频.zip
- 毕设和企业适用springboot人力资源管理类及用户体验优化平台源码+论文+视频.zip
- 毕设和企业适用springboot人力资源管理类及用户行为分析平台源码+论文+视频.zip
- 毕设和企业适用springboot人力资源管理类及运动管理平台源码+论文+视频.zip
- 毕设和企业适用springboot人力资源管理类及智能化系统源码+论文+视频.zip
- 毕设和企业适用springboot社交互动平台类及社交媒体平台源码+论文+视频.zip
- 毕设和企业适用springboot社交互动平台类及人工智能客服平台源码+论文+视频.zip
- 毕设和企业适用springboot社交互动平台类及社交游戏平台源码+论文+视频.zip
- 毕设和企业适用springboot社交应用平台类及跨平台销售系统源码+论文+视频.zip
- 毕设和企业适用springboot社交应用平台类及民生服务平台源码+论文+视频.zip
- 毕设和企业适用springboot社交互动平台类及生活服务平台源码+论文+视频.zip
- 毕设和企业适用springboot社交互动平台类及食品配送管理平台源码+论文+视频.zip
- 毕设和企业适用springboot社交互动平台类及社区服务平台源码+论文+视频.zip
- 毕设和企业适用springboot社交应用平台类及无人驾驶系统源码+论文+视频.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功