下载频道  >  mangdun的资源
  • CRF教程(An Introduction to crf for relation learnig).pdf

    CRF在关系提取方面的应用,但主要是介绍基础的CRF知识,值得认真学习An Introduction to crf for relation learnig.pdf

    2020-01-27
    6
  • 大牛写的CRF教程-经典!

    Andrew McCallum 可以说是Maximum Entropy Markov Models的开山鼻祖,在CRF也贡献颇多,他写的CRF教程值得认真学习. 全英文,An Introduction to Conditional Random Fields

    2020-01-27
    7
  • Netflix Prize 完整数据集

    著名的Netflix 智能推荐 百万美金大奖赛使用是数据集. 因为竞赛关闭, Netflix官网上已无法下载. Netflix provided a training data set of 100,480,507 ratings that 480,189 users gave to 17,770 movies. Each training rating is a quadruplet of the form <user, movie, date of grade, grade>. The user and movie fields are integer IDs, while grades are from 1 to 5 (integral) stars.[3] The qualifying data set contains over 2,817,131 triplets of the form <user, movie, date of grade>, with grades known only to the jury. A participating team's algorithm must predict grades on the entire qualifying set, but they are only informed of the score for half of the data, the quiz set of 1,408,342 ratings. The other half is the test set of 1,408,789, and performance on this is used by the jury to determine potential prize winners. Only the judges know which ratings are in the quiz set, and which are in the test set—this arrangement is intended to make it difficult to hill climb on the test set. Submitted predictions are scored against the true grades in terms of root mean squared error (RMSE), and the goal is to reduce this error as much as possible. Note that while the actual grades are integers in the range 1 to 5, submitted predictions need not be. Netflix also identified a probe subset of 1,408,395 ratings within the training data set. The probe, quiz, and test data sets were chosen to have similar statistical properties. In summary, the data used in the Netflix Prize looks as follows: Training set (99,072,112 ratings not including the probe set, 100,480,507 including the probe set) Probe set (1,408,395 ratings) Qualifying set (2,817,131 ratings) consisting of: Test set (1,408,789 ratings), used to determine winners Quiz set (1,408,342 ratings), used to calculate leaderboard scores For each movie, title and year of release are provided in a separate dataset. No information at all is provided about users. In order to protect the privacy of customers, "some of the rating data for some customers in the training and qualifying sets have been deliberately perturbed in one or more of the following ways: deleting ratings; inserting alternative ratings and dates; and modifying rating dates".[2] The training set is such that the average user rated over 200 movies, and the average movie was rated by over 5000 users. But there is wide variance in the data—some movies in the training set have as few as 3 ratings,[4] while one user rated over 17,000 movies.[5] There was some controversy as to the choice of RMSE as the defining metric. Would a reduction of the RMSE by 10% really benefit the users? It has been claimed that even as small an improvement as 1% RMSE results in a significant difference in the ranking of the "top-10" most recommended movies for a user.[6]

    2018-12-03
    7
  • Joomla! Programming 2.5

    最新的关于Joomla!编程方面的书籍,以前江湖上流传的都是针对1.5版写的,这个是资格的针对2.5版的. 考虑2.5相对1.5点巨大变化,这本书尤为珍贵

    2013-01-30
    10
  • Joomla! Development - A Beginner’s Guide

    Joomla! Development - A Beginner’s Guide 涉及最新的2.5版, 是进行Joomla!开发的难得入门教程

    2013-01-05
    10
  • Joomla! 2.5 Beginner's guide

    Joomla! 2.5 Beginner's guide ,这是免版权免费发放的入门书,英文pdf格式

    2013-01-05
    10
  • PHP工具组件ezcomponent

    ezcomponent是一套低耦合度的php基础工具组件, 大名鼎鼎的ezPublish就是使用这套组件

    2012-12-03
    5
  • 最新版simpleGraph2.7.2源码

    SimpleGraph是一个完全免费的delphi图形工具,利用它可以方便的在软件中集成图形功能,制作出一流的用户图形交互界面.这是最新的2.7.2版

    2010-07-02
    5
img
mangdun

关注 私信