# YoloV5 NPU
![output image]( https://qengineering.eu/github/YoloV5_Parking_NPU.webp )
## YoloV5 for RK3566/68/88 NPU (Rock 5, Orange Pi 5, Radxa Zero 3). <br/>
[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)<br/><br/>
Paper: https://towardsdatascience.com/yolo-v5-is-here-b668ce2a4908<br/><br/>
Special made for the NPU, see [Q-engineering deep learning examples](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html)
------------
## Model performance benchmark (FPS)
All models, with C++ examples can be found on the SD images.<br><br>
![output image]( https://qengineering.eu/github/RockPi5_Ubuntu_22.jpg ) [Rock 5 with **Ubuntu 22.04**, OpenCV, ncnn and **NPU**](https://github.com/Qengineering/Rock-5-Ubuntu-22-image)<br><br>
![output image]( https://qengineering.eu/github/RadxaZero3_Ubuntu_22.jpg ) [Radxa Zero 3 with **Ubuntu 22.04**, OpenCV, ncnn and **NPU**](https://github.com/Qengineering/Radxa-Zero-3-NPU-Ubuntu22)<br><br>
All models are quantized to **int8**, unless otherwise noted.<br>
| demo | model_name | RK3588 | RK3566/68 |
| ---------------- | ---------------------------- | :-----: | :--------: |
| yolov5 | yolov5s_relu | 50.0 | 14.8 |
| | yolov5n | 58.8 | 19.5 |
| | yolov5s | 37.7 | 11.7 |
| | yolov5m | 16.2 | 5.7 |
| yolov6 | yolov6n | 63.0 | 18.0 |
| | yolov6s | 29.5 | 8.1 |
| | yolov6m | 15.4 | 4.5 |
| yolov7 | yolov7-tiny | 53.4 | 16.1 |
| | yolov7 | 9.4 | 3.4 |
| yolov8 | yolov8n | 53.1 | 18.2 |
| | yolov8s | 28.5 | 8.9 |
| | yolov8m | 12.1 | 4.4 |
| yolov10 | yolov10n | 35.1 | 12.5 |
| | yolov8s | 23.4 | 7.3 |
| | yolov8m | 9.7 | 3.4 |
| | yolov8x | 5.1 | 1.8 |
| yolox | yolox_s | 30.0 | 10.0 |
| | yolox_m | 12.9 | 4.8 |
| ppyoloe | ppyoloe_s | 28.8 | 9.2 |
| | ppyoloe_m | 13.1 | 5.04 |
| yolov5_seg | yolov5n-seg | 9.4 | 1.04 |
| | yolov5s-seg | 7.8 | 0.87 |
| | yolov5m-seg | 6.1 | 0.71 |
| yolov8_seg | yolov8n-seg | 8.9 | 0.91 |
| | yolov8s-seg | 7.3 | 0.87 |
| | yolov8m-seg | 4.5 | 0.7 |
| ppseg | ppseg_lite_1024x512 | 27.5 | 2.4 |
| RetinaFace | RetinaFace_mobile320<sup>1</sup> | 243.6 | 88.5 |
| | RetinaFace_resnet50_320<sup>1</sup> | 43.4 | 11.8 |
| PPOCR-Det | ppocrv4_det<sup>2</sup> | 31.5 | 15.1 |
| PPOCR-Rec | ppocrv4_rec<sup>3</sup> | 35.7 | 17.3 |
<sup>1</sup> Input size 320x320<br>
<sup>2</sup> Input size 480x480<br>
<sup>3</sup> Input size 48x320, FP16<br>
* Due to the pixel-wise filling and drawing, segmentation models are relatively slow
------------
## Dependencies.
To run the application, you have to:
- OpenCV 64-bit installed.
- Optional: Code::Blocks. (```$ sudo apt-get install codeblocks```)
### Installing the dependencies.
Start with the usual
```
$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install cmake wget curl
```
#### OpenCV
Follow the Raspberry Pi 4 [guide](https://qengineering.eu/install-opencv-on-raspberry-64-os.html).<br>
#### RKNPU2
```
$ git clone https://github.com/airockchip/rknn-toolkit2.git
```
We only use a few files.
```
rknn-toolkit2-master
│
└── rknpu2
│
└── runtime
│
└── Linux
│
└── librknn_api
├── aarch64
│ └── librknnrt.so
└── include
├── rknn_api.h
├── rknn_custom_op.h
└── rknn_matmul_api.h
$ cd ~/rknn-toolkit2-master/rknpu2/runtime/Linux/librknn_api/aarch64
$ sudo cp ./librknnrt.so /usr/local/lib
$ cd ~/rknn-toolkit2-master/rknpu2/runtime/Linux/librknn_api/include
$ sudo cp ./rknn_* /usr/local/include
```
Save 2 GB of disk space by removing the toolkit. We do not need it anymore.
```
$ cd ~
$ sudo rm -rf ./rknn-toolkit2-master
```
------------
## Installing the app.
To extract and run the network in Code::Blocks <br/>
```
$ mkdir *MyDir* <br/>
$ cd *MyDir* <br/>
$ git clone https://github.com/Qengineering/YoloV5-NPU.git <br/>
```
------------
## Running the app.
You can use **Code::Blocks**.
- Load the project file *.cbp in Code::Blocks.
- Select _Release_, not Debug.
- Compile and run with F9.
- You can alter command line arguments with _Project -> Set programs arguments..._
Or use **Cmake**.
```
$ cd *MyDir*
$ mkdir build
$ cd build
$ cmake ..
$ make -j4
```
Make sure you use the model fitting your system.<br><br>
More info or if you want to connect a camera to the app, follow the instructions at [Hands-On](https://qengineering.eu/deep-learning-examples-on-raspberry-32-64-os.html#HandsOn).<br/><br/>
![output image]( https://qengineering.eu/github/YoloV5_Bus_NPU.webp )
------------
[![paypal](https://qengineering.eu/images/TipJarSmall4.png)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=CPZTM5BB3FCYL)
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
YoloV5网络处理器YoloV5 适用于 RK3566/68/88 NPU(Rock 5、Orange Pi 5、Radxa Zero 3)。论文https://towardsdatascience.com/yolo-v5-is-here-b668ce2a4908 专为 NPU 制作,请参阅Q 工程深度学习示例模型性能基准(FPS)所有模型以及 C++ 示例均可在 SD 图像上找到。Rock 5 搭载Ubuntu 22.04、OpenCV、ncnn 和NPU Radxa Zero 3 搭载Ubuntu 22.04、OpenCV、ncnn 和NPU除非另有说明, 所有模型均量化为int8 。演示 模型名称 RK3588 RK3566/68yolov5 yolov5s_relu 50.0 14.8 yolov5n 58.8 19.5 yolov5s 37.7 11.7 yolov5m 16.2 5.7yolov6 yolov6n 63.0 18.0 yolov6s 29.5 8.1 yolov6m 15.4 4.5yolov7
资源推荐
资源详情
资源评论
收起资源包目录
RK3566,68,88 的 YoloV5 NPU.zip (23个子文件)
rk3566
yolov5m.rknn 22.66MB
yolov5n.rknn 2.92MB
yolov5s_relu.rknn 7.59MB
yolov5s.rknn 8.25MB
include
postprocess.h 1KB
CMakeLists.txt 819B
标签.txt 54B
parking.jpg 276KB
src
main.cpp 10KB
postprocess.cpp 10KB
LICENSE 1KB
YoloV5.cbp 2KB
rk3588
yolov5m.rknn 24.43MB
yolov5n.rknn 4.05MB
yolov5s_relu.rknn 8.09MB
yolov5s.rknn 9.4MB
资源内容.txt 706B
rk3568
yolov5m.rknn 22.66MB
yolov5n.rknn 2.92MB
yolov5s_relu.rknn 7.59MB
yolov5s.rknn 8.25MB
busstop.jpg 582KB
README.md 6KB
共 23 条
- 1
资源评论
赵闪闪168
- 粉丝: 1604
- 资源: 4236
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功