信号分解是将一个复杂的信号拆分成数个基本成分或组件的过程。EMD(Empirical Mode Decomposition,经验模态分解)是一种常用的信号分解方法,它能将非线性和非平稳信号分解成一系列固有模态函数(IMFs,Intrinsic Mode Functions),每个IMF都代表了原始信号中的特定时频结构。
EMD的内时域图是指每个IMF在时间域上的局部性质,可以通过绘制IMF的波形图来表示。内时域图展示了信号在时间上的变化特征,可以观察到信号中的不同频率分量和振幅变化。
EMD的频谱图是指每个IMF在频域上的能量分布情况,可以通过对每个IMF进行傅里叶变换来得到。频谱图展示了信号的频率分布特征,能够反映信号中各个频率分量的能量贡献。
通过分析EMD的内时域图和频谱图,可以更全面地理解信号的时频特征,提取出不同频率和振幅的成分,为后续的信号处理和分析提供基础。