下载 >  网络技术 >  网络基础 > BP多层感知器 源代码 神经网络
5

BP多层感知器 源代码 神经网络

BP多层感知器 源代码 神经网络 tic; %计时开始 clc; %清屏 clear all; %清除所有变量 disp('输入层神经元个数: 16'); %显示输入层神经元个数 input=16; disp('中间层神经元个数: 8'); %显示中间层神经元个数 middle=8; disp('输出层神经元个数: 3'); %显示输出层神经元个数 output=3; disp('输入模式1 2 3及其对应的输出:'); x1=[1;1;1;1;1;0;0;1;1;1;1;1;1;0;0;1]; %x1(16,1) y1=[1;0;0]; %y1(3,1) x2=[0;1;0;0;0;1;0;0;0;1;0;0;0;1;0;0]; %x2(16,1) y2=[0;1;0]; %y2(3,1) x3=[1;1;1;1;1;0;0;1;1;0;0;1;1;1;1;1]; %x3(16,1) y3=[0;0;1]; %y3(3,1) disp('形成一张供调用的样本向量表:'); disp('X_sample向量表:x1,x2,x3'); X_sample=[x1,x2,x3] %x1,x2,x3向量表>&g t;>X(16,3) disp('X_sample向量表:y1,y2,y3'); Y_sample=[y1,y2,y3] %y1,y2,y3向量表>>>Yo(3,3) disp('初始化连接权矩阵:'); disp('显示初始化连接权矩阵v(16,8):v(i,j):v(input,middle):'); v=rands(input,middle); %初始化连接权矩阵v(i,j) :输入层与中间层的连接权>>>v(16,8) disp(v); %显示初始化连接权矩阵v(i,j) disp('显示初始化连接权矩阵w(8,3):w(j,k):w(middle,output):'); w=rands(middle,output); %初始化连接权矩阵w(j,t) :中间层与输出层的连接权>>>w(8,3) disp(w); %显示初始化连接权矩阵w(j,t) disp('初始化阈值矩阵:'); disp('中间层阈值矩阵th1(8,1):th1(j,1):th1(middle,1):'); th1=rands(middle,1); %初始化中间层阈值矩阵th1 :中间层的阈值>>>th1(8,1) disp(th1); %显示中间层阈值矩阵th1 disp('输出层阈值矩阵th2(3,1):th2(k,1):th2 ...展开详情收缩
2009-06-13 上传大小:28KB
分享
收藏 (2) 举报
多层感知器神经网络

多层感知器神经网络,通过多次联系,实现自学习的过程,对异或学习非常有效,资源中xor.dat为异或学习样本

立即下载
基于神经网络的BP分类算法实现(C语言)

参考周爱民教授机器学习公式推导过程及相关伪代码,使用简单易懂的语言将其编写出来,注释挺多,很适合编程新手。

立即下载
BP神经网络MATLAB源代码

BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

立即下载
bp神经网络源代码,可直接运行

bp神经网络源代码,可直接运行,需要的可以下载学习一下。

立即下载
BP神经网络预测MATLAB源代码

BP神经网络预测源代码,可用于与单变量或多变量。

立即下载
bp神经网络算法源码

bp神经网络改进算法 一.使用说明 该程序有五个主要菜单项: A.数据读入 (从已有数据文件中数据,包括网络结构,权值,学习率,样本等) B.新建数据 (建立新的数据文件) C.学习 D.测试 E.误差显示 操作过程: 1.使用已有的数据: A -> C -> D,E; (已有XOR.TXT, AND.TXT, OR.TXT) 2.新建数据文件: B -> A -> C -> D,E; 举例:求XOR问题数据文件的建立(菜单[B]的使用) 对话框(1) 输入层单元个数:2 (TAB键切换) 隐层单元个数:2 输出层单元个数:1 学习率:0.5 模式个数:4 ("输入"键) 对话框(2 -1) 第1个模式的输入值: (TAB键切换) 注意:0 (空格) 0 第1个模式的目标值: 0 ("输入"键) 对话框(2 - 2) 第2个模式的输入值: (TAB键切换) 0 (空格) 1 第2个模式的目标值: 1 ("输入"键) 对话框(2 - 3) 第3个模式的输入值: (TAB键切换) 1 (空格) 0 第3个模式的目标值: 1 ("输入"键) 对话框(2 - 4) 第4个模式的输入值: (TAB键切换) 1 (空格) 1 第4个模式的目标值: 0 ("输入"键) 二.程序说明 程序实现的是二层BP网络,通过从文件中读入数据来构建网络,同时读入对应的样本进行学习,测试. ε=0.09 变量为max_error_tollerance; forward_pass()向前计算输出值; backward_pass()向后调整权值;

立即下载
《MATLAB R2016a神经网络设计与应用28个案例分析》随书代码

目录 第1章线性神经网络的工程应用 1.1系统辨识的MATLAB实现 1.2自适应系统辨识的MATLAB实现 1.3线性系统预测的MATLAB实现 1.4线性神经网络用于消噪处理的MATLAB实现 第2章神经网络预测的实例分析 2.1地震预报的MATLAB实现 2.1.1概述 2.1.2地震预报的MATLAB实例分析 2.2交通运输能力预测的MATLAB实现 2.2.1概述 2.2.2交通运输能力预测的MATLAB实例分析 2.3农作物虫情预测的MATLAB实现 2.3.1概述 2.3.2农作物虫情预测的MATLAB实例分析 2.4基于概率神经网络的故障诊断 2.4.1概述 2.4.2基于PNN的故障诊断实例分析 2.5基于BP网络和Elman网络的齿轮箱故障诊断 2.5.1概述 2.5.2基于BP网络的齿轮箱故障诊断实例分析 2.5.3基于Elman网络的齿轮箱故障诊断实例分析 2.6基于RBF网络的船用柴油机故障诊断 2.6.1概述 2.6.2基于RBF网络的船用柴油机故障诊断实例分析 第3章BP网络算法分析与工程应用 3.1数值优化的BP网络训练算法 3.1.1拟牛顿法 3.1.2共轭梯度法 3.1.3LevenbergMarquardt法 3.2BP网络的工程应用 3.2.1BP网络在分类中的应用 3.2.2函数逼近 3.2.3BP网络用于胆固醇含量的估计 3.2.4模式识别 第4章神经网络算法分析与实现 4.1Elman神经网络 4.1.1Elman神经网络结构 4.1.2Elman神经网络的训练 4.1.3Elman神经网络的MATLAB实现 4.2Boltzmann机网络 4.2.1BM网络结构 4.2.2BM网络的规则 4.2.3用BM网络解TSP 4.2.4BM网络的MATLAB实现 4.3BSB模型 4.3.1BSB神经模型概述 4.3.2BSB的MATLAB实现 第5章预测控制算法分析与实现 5.1系统辨识 5.2自校正控制 5.2.1单步输出预测 5.2.2最小方差控制 5.2.3最小方差间接自校正控制 5.2.4最小方差直接自校正控制 5.3自适应控制 5.3.1MIT自适应律 5.3.2MIT归一化算法 第6章改进的广义预测控制算法分析与实现 6.1预测控制 6.1.1基于CARIMA模型的JGPC 6.1.2基于CARMA模型的JGPC 6.2神经网络预测控制的MATLAB实现 第7章SOFM网络算法分析与应用 7.1SOFM网络的生物学基础 7.2SOFM网络的拓扑结构 7.3SOFM网络学习算法 7.4SOFM网络的训练过程 7.5SOFM网络的MATLAB实现 7.6SOFM网络在实际工程中的应用 7.6.1SOFM网络在人口分类中的应用 7.6.2SOFM网络在土壤分类中的应用 第8章几种网络算法分析与应用 8.1竞争型神经网络的概念与原理 8.1.1竞争型神经网络的概念 8.1.2竞争型神经网络的原理 8.2几种联想学习规则 8.2.1内星学习规则 8.2.2外星学习规则 8.2.3科荷伦学习规则 第9章Hopfield神经网络算法分析与实现 9.1离散Hopfield神经网络 9.1.1网络的结构与工作方式 9.1.2吸引子与能量函数 9.1.3网络的权值设计 9.2连续Hopfield神经网络 9.3联想记忆 9.3.1联想记忆网络 9.3.2联想记忆网络的改进 9.4Hopfield神经网络的MATLAB实现 第10章学习向量量化与对向传播网络算法分析与实现 10.1学习向量量化网络 10.1.1LVQ网络模型 10.1.2LVQ网络学习算法 10.1.3LVQ网络学习的MATLAB实现 10.2对向传播网络 10.2.1对向传播网络概述 10.2.2CPN网络学习及规则 10.2.3对向传播网络的实际应用 第11章NARMAL2控制算法分析与实现 11.1反馈线性化控制系统原理 11.2反馈线性控制的MATLAB实现 11.3NARMAL2控制器原理及实例分析 11.3.1NARMAL2控制器原理 11.3.2NARMAL2控制器实例分析 第12章神经网络函数及其导函数 12.1神经网络的学习函数 12.2神经网络的输入函数及其导函数 12.3神经网络的性能函数及其导函数 12.3.1性能函数 12.3.2性能函数的导函数 第13章Simulink神经网络设计 13.1Simulink交互式仿真集成环境 13.1.1Simulink模型创建 13.1.2Simulink建模操作 13.1.3Simulink参数设置 13.1.4简单的Simulink例子 13.2Simulink神经网络模块 13.2.1传递函数模块库 13.2.2网络输入模块库 13.2.3权值设置模块库 13.2.4处理模块库 13.2.5控制系统模块库 13.3Simulink神经网络设计 13.3.1模型构建 13.3.2模型仿真 13.3.3修改信号源 第14章BP神经元模型与应用案例 14.1BP神经元及其模型 14.2BP网络的学习 14.2.1BP网络学习算法 14.2.2BP网络学习算法的比较 14.3BP网络的局限性 14.4BP网络的MATLAB程序应用举例 14.4.1BP网络设计的基本方法 14.4.2BP网络应用举例 第15章自适应共振网络算法分析与应用 15.1ART1网络 15.1.1网络系统结构 15.1.2ATR1网络运行过程 15.1.3ATR1学习算法 15.1.4ART1网络应用 15.2ART2网络 15.2.1网络结构与运行原理 15.2.2网络的数学模型与学习算法 15.2.3ART2网络在系统辨识中的应用 第16章径向基网络算法分析与应用 16.1正则化理论及正则化RBF网络 16.1.1正则化理论 16.1.2正则化RBF网络 16.2径向基神经网络结构 16.2.1径向基神经元模型 16.2.2径向基神经网络模型 16.3径向基神经网络学习 16.4径向基神经网络的工程应用 16.4.1函数逼近 16.4.2散布常数对径向基网络的影响 16.5广义回归神经网络 16.5.1GRNN网络结构 16.5.2GRNN网络工作原理 16.6概率神经网络 16.6.1PNN网络结构 16.6.2PNN网络工作原理 16.6.3应用PNN进行变量分类 第17章感知器算法分析与实现 17.1单层感知器模型 17.2单层感知器的学习算法 17.3感知器的局限性 17.4单层感知器神经网络的MATLAB仿真 17.4.1感知器神经网络设计的基本方法 17.4.2单层感知器神经网络的应用举例 17.5多层感知器神经网络及其MATLAB仿真 17.5.1多层感知器神经网络的设计方法 17.5.2多层感知器神经网络的应用举例 17.6用于线性分类问题的进一步讨论 17.6.1决策函数与决策边界 17.6.2感知器的决策函数与决策边界 第18章线性网络与BP网络工具箱函数及其应用 18.1线性神经网络工具箱函数 18.1.1创建函数及其应用 18.1.2学习函数及其应用 18.1.3性能函数及其应用 18.1.4权积函数及其应用 18.1.5初始化函数 18.2BP神经网络工具箱函数 18.2.1创建函数及其应用 18.2.2传递函数及其应用 18.2.3学习函数及其应用 18.2.4性能函数及其应用 18.2.5训练函数及其应用 18.2.6显示函数及其应用 第19章BP网络算法分析与实现 19.1BP神经网络模型 19.2BP神经网络算法 19.2.1SDBP算法 19.2.2MOBP算法 19.2.3VLBP算法 19.2.4RPROP算法 19.2.5CGBP算法 19.3BP网络设计 19.4BP神经网络局限性 19.5BP神经网络算法改进 19.5.1附加动量法 19.5.2有自适应lr的梯度下降法 19.5.3弹性梯度下降法 第20章自组织网络工具箱函数及其应用 20.1创建函数 20.2传递函数 20.3距离函数 20.4学习函数 20.5初始化函数 20.6训练函数 20.7显示函数 20.8权值函数 20.9结构函数 第21章线性网络算法分析与实现 21.1线性神经网络结构 21.2线性神经网络学习 21.3线性神经网络训练 21.4线性神经网络的MATLAB实现 21.5线性神经网络的局限性 21.5.1超定系统 21.5.2不定系统 21.5.3线性相关向量 21.5.4学习速率过大 第22章神经网络工具箱函数及其应用 22.1径向基神经网络工具箱函数 22.1.1创建函数 22.1.2变换函数 22.1.3传递函数 22.1.4距离函数 22.2Hopfield神经网络工具箱函数 22.2.1传输函数 22.2.2学习函数 22.3Elman神经网络工具箱函数 22.4学习向量量化网络工具箱函数 22.4.1创建函数 22.4.2显示函数 第23章感知器网络算法分析与实现 23.1单层感知器 23.1.1单层感知器模型 23.1.2感知器功能 23.1.3网络结构 23.1.4感知器算法 23.1.5网络的训练 23.1.6单层感知器实现 23.1.7感知器局限性 23.2多层感知器 23.2.1多层感知器介绍 23.2.2多层感知器实现 23.3感知器神经网络的MATLAB实现 第24章神经网络工具箱函数分析与应用 24.1权值和阈值初始化函数 24.2训练和自适应调整函数 第25章自组织竞争网络算法分析与应用 25.1自组织竞争网络结构 25.2自组织竞争网络学习规则 25.2.1Kohonen权值学习规则 25.2.2阈值学习规则 25.3网络训练 25.4竞争型网络存在的问题 25.5竞争型网络的工程应用 第26章小波神经网络在交通流量预测中的应用 26.1小波变换概述 26.2小波神经网络的定义 26.3小波神经网络的理论 26.4小波神经网络的结构 26.5小波神经网络用于交通流量预测 第27章模糊神经网络算法分析与应用 27.1模糊神经网络 27.2几种常用模型的模糊神经网络 27.2.1Mamdani模型模糊神经网络 27.2.2TakagiSugeno模型模糊神经网络 27.2.3模糊神经网络的函数 27.2.4模糊神经网络的应用 27.2.5神经模糊系统的图形界面 第28章感知器网络工具箱函数及其应用 28.1创建函数 28.2初始化函数 28.3显示函数 28.4仿真函数 28.5性能函数 28.6训练函数 28.7学习函数 28.8传递函数

立即下载
BP神经网络源代码(C++).doc

BP神经网络源代码(C++).doc BP神经网络源代码(C++).doc BP神经网络源代码(C++).doc

立即下载
多层感知器三种学习算法的比较

多层感知器是一种多层前馈神经网络 ,常用的快速训练算法有共轭梯度法、拟牛顿法。通 过模式分类实验对这两种算法和 BP算法进行比较 ,并由试验数据得出这几种算法的复杂性、可靠 性 ,以及由算法产生的多层感知器的泛化能力。

立即下载
基于BP神经网络的彩票预测系统的研究(含测试用源代码

基于BP网络的彩票预测系统的研究.kdh 双色球彩票分析技术及其应用研究.nh 双色球的数理分析及其应用.caj BP算法的模拟程序.caj 预测源代码(练习用,不很准确)

立即下载
BP神经网络Matlab程序例子--绝对经典

本程序为BP最简单的程序,含有归一化和反归一化,你只需修改其中的一些参数就可以运行。程序为作者处理数据自编,只希望能给学习BP的新手一些微不足道的帮助。程序如有不妥,敬请指正。

立即下载
实现BP神经网络的matlab代码

用matlab代码实现的BP神经网络,拟合了一个曲线,里面两个文件,运行BP文件就可以,可以直观看到结果

立即下载
BP神经网络实现人脸识别(包含软件源码、说明文档)

基于BP神经网络的原理,在C++平台上制作而成的人脸识别软件,能直接运行,也可以学习源码后,整理并提升成为自己的东西!网上找的!赚分用 绝对值

立即下载
基于BP神经网络PID控制的源代码

一个基于BP神经网络PID控制,《先进PID控制及其MATLAB仿真》一个例子

立即下载
BP神经网络拟合函数的Matlab程序

神经网络拟合函数的简单程序,,matlab语言编写。

立即下载
基于BP神经网络的数字识别系统源代码

VS2010环境下开发的基于BP神经网络的数字识别系统 本系统可以识别彩色数字 已经多数字数字 仅供学习交流

立即下载
神经网络BP算法C++源程序

用于训练多层感知器的神经网络BP算法C++源程序,有较为详细的注释。

立即下载
BP神经网络的人脸识别matlab代码

这是从网上找到的资源,但是却不能运行,经过修改,加入了些自己的解释,已成功运行,得到结果人脸的识别率高达97.5%。

立即下载
BP神经网络整定的PID算法_matlab源程序

BP神经网络整定的PID算法_matlab源程序,神经网络的PID算法,MATLAB源程序代码

立即下载
房价预测的BP神经网络实现_python代码

波士顿房价预测的BP神经网络实现 1) 训练数据 housing.csv 使用波士顿房价数据 2) 使用Python代码实现前向和后向传播 3) 损失函数使用方差

立即下载
关闭
img

spring mvc+mybatis+mysql+maven+bootstrap 整合实现增删查改简单实例.zip

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
点击完成任务获取下载码
输入下载码
为了良好体验,不建议使用迅雷下载
img

BP多层感知器 源代码 神经网络

会员到期时间: 剩余下载个数: 剩余C币: 剩余积分:0
为了良好体验,不建议使用迅雷下载
VIP下载
您今日下载次数已达上限(为了良好下载体验及使用,每位用户24小时之内最多可下载20个资源)

积分不足!

资源所需积分/C币 当前拥有积分
您可以选择
开通VIP
4000万
程序员的必选
600万
绿色安全资源
现在开通
立省522元
或者
购买C币兑换积分 C币抽奖
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
为了良好体验,不建议使用迅雷下载
确认下载
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
为了良好体验,不建议使用迅雷下载
VIP和C币套餐优惠
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
您的积分不足,将扣除 10 C币
为了良好体验,不建议使用迅雷下载
确认下载
下载
您还未下载过该资源
无法举报自己的资源

兑换成功

你当前的下载分为234开始下载资源
你还不是VIP会员
开通VIP会员权限,免积分下载
立即开通

你下载资源过于频繁,请输入验证码

您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:webmaster@csdn.net!

举报

若举报审核通过,可返还被扣除的积分

  • 举报人:
  • 被举报人:
  • *类型:
    • *投诉人姓名:
    • *投诉人联系方式:
    • *版权证明:
  • *详细原因: