精通Matlab数字图像处理与识别
作者:张铮 倪红霞 苑春苗 杨立红
出版社:人民邮电出版社
ISBN:9787115304636
VIP会员免费
(仅需0.8元/天)
¥ 41.6
温馨提示: 价值40000元的1000本电子书,VIP会员随意看哦!
电子书推荐
-
(机器学习-使用OpenCV和Python进行智能图像处理)Machine Learning for OpenCV.pdf 评分:
本书是一本基于OpenCV和Python的机器学习实战手册,既详细介绍机器学习及OpenCV相关的基础知识,又通过具体实例展示如何使用OpenCV和Python实现各种机器学习算法,并提供大量示列代码,可以帮助你掌握机器学习实用技巧,解决各种不同的机器学习和图像处理问题。
上传时间:2019-07 大小:11.39MB
- 7.64MB
opencv-python教程中文版.pdf
2021-07-11opencv-python官方教程中文版
- 69.11MB
opencv-machine-learning-master.zip
2021-05-26《OpenCV与Python实现机器学习》是一本由Michael Beyeler编著、王磊翻译的书籍,其源代码和相关图片数据被整理成"opencv-machine-learning-master.zip"压缩包供学习者参考。这个压缩包主要涵盖了如何利用OpenCV库和...
- 9.39MB
2017 Machine Learning for OpenCV Intelligent image processing with Python
2018-02-04Machine Learning for OpenCV: Intelligent image processing with Python by Michael Beyeler (https://www.amazon.com/Machine-Learning-OpenCV-Intelligent-processing/dp/1783980281/ref=sr_1_1?s=amazon-devices&ie=UTF8&qid=1517710318&sr=8-1&keywords=opencv+machine+learning&dpID=41CKBKW8y4L&preST=_SX258_BO1,204,203,200_QL70_&dpSrc=srch) The author is a Postdoctoral Fellow in Neuroengineering and Data Science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye). His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. Michael is an active contributor to several open-source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a Ph.D. in Computer Science from the University of California, Irvine as well as a M.Sc. in Biomedical Engineering and a B.Sc. in Electrical Engineering from ETH Zurich, Switzerland. When he is not nerding out on brains, he can be found on top of a snowy mountain, in front of a live band, or behind the piano.
- 2.47MB
IMX-MACHINE-LEARNING-UG.pdf
2021-08-12这份开发手册《IMX-MACHINE-LEARNING-UG.pdf》旨在为开发者提供关于如何在IMX8系列芯片上开发人工智能和机器学习应用的指导。 从手册内容可以看出,它主要覆盖了以下几个方面: 1. 软件堆栈介绍(Software Stack ...
- 15.70MB
一个基于Arduino的魔方复原机器人,使用Python结合Machine Learning和OpenCV。 .zip
2024-04-05此外,有许多书籍、在线课程、博客文章和研讨会专门讲解OpenCV的使用和计算机视觉技术。 综上所述,OpenCV作为一款功能强大、高效、跨平台且开源的计算机视觉库,为开发者提供了实现各类图像和视频处理任务所需的...
- 20.30MB
machine learning for opencv(pdf/epub/azw3/code)
2017-12-01书名中的"OpenCV"是开源计算机视觉库的缩写,它提供了丰富的图像处理和计算机视觉功能,而“机器学习”则代表了一种让计算机通过数据学习和改进的技术,对于计算机视觉任务来说,机器学习是实现智能化分析的重要手段...
- 4.47MB
Opencv-Python教程
2017-01-26OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了丰富的图像...通过这些教程,学习者可以掌握使用Python进行图像处理、计算机视觉和机器学习的基本技能和高级应用。
- 12.16MB
Machine learning for opencv
2018-04-04标题《Machine learning for opencv》和描述说明这本书是关于使用OpenCV和Python来介绍机器学习和图像处理的实际入门书籍。这本书并不是一个扫描版本,意味着它被设计为易于阅读和理解的数字或纸质版式,并且解决了...
- 4.97MB
OpenCV官方教程中文版(For Python)pdf
2021-04-24OpenCV官方教程中文版(For Python) 段力辉 译 Python-OpenCV OpenCV官方教程中文版(For Python) 段力辉 译 Python-OpenCV
- 4.82MB
Python and OpenCV 新手教程2017
2018-03-15OpenCV是一个开源的计算机视觉和机器学习软件库,它提供了很多常用的图像处理和计算机视觉算法。教程中涵盖了从安装OpenCV环境开始到编写具体代码,再到演示执行结果和进行配图的完整过程。 教程主要分为以下几个...
- 5.89MB
opencv-machine-learning-master_stage4aj_python
2021-09-29在Python中使用OpenCV进行机器学习,首先需要了解OpenCV的cv2模块,它是Python接口,提供了大量的函数和类用于图像处理。例如,`cv2.imread()`用于读取图像,`cv2.imshow()`用于显示图像,`cv2.imwrite()`用于保存...
- 127KB
6. Machine Learning_imageprocessing_python_machinelearning_
2021-09-29Python是一种广泛应用于数据科学、机器学习和图像处理领域的编程语言,因其易读性、丰富的库支持以及强大的社区而备受青睐。 图像处理是计算机视觉领域的一个关键部分,它包括图像获取、图像增强、特征检测与提取、...
- 5.56MB
Machine Learning for OpenCV_Intelligent image processing with Python(2017).epub
2017-12-24Chapter 1, A Taste of Machine Learning, will gently introduce you to the different subfields of machine learning, and explain how to install OpenCV and other essential tools in the Python Anaconda environment. Chapter 2, Working with Data in OpenCV and Python, will show you what a typical machine learning workflow looks like, and where data comes in to play. I will explain the difference between training and test data, and show you how to load, store, manipulate, and visualize data with OpenCV and Python. Chapter 3, First Steps in Supervised Learning, will introduce you to the topic of supervised learning by reviewing some core concepts, such as classification and regression. You will learn how to implement a simple machine learning algorithm in OpenCV, how to make predictions about the data, and how to evaluate your model. Chapter 4, Representing Data and Engineering Features, will teach you how to get a feel for some common and well-known machine learning datasets and how to extract the interesting stuff from your raw data. Chapter 5, Using Decision Trees to Make a Medical Diagnosis, will show you how to build decision trees in OpenCV, and use them in a variety of classification and regression problems. Chapter 6, Detecting Pedestrians with Support Vector Machines, will explain how to build support vector machines in OpenCV, and how to apply them to detect pedestrians in images. Chapter 7, Implementing a Spam Filter with Bayesian Learning, will introduce you to probability theory, and show you how you can use Bayesian inference to classify emails as spam or not. Chapter 8, Discovering Hidden Structures with Unsupervised Learning, will talk about unsupervised learning algorithms such as k-means clustering and Expectation-Maximization, and show you how they can be used to extract hidden structures in simple, unlabeled datasets. Chapter 9, Using Deep Learning to Classify Handwritten Digits, will introduce you to the exciting field of deep learning. Starting with the perceptron and multi-layer perceptrons, you will learn how to build deep neural networks in order to classify handwritten digits from the extensive MNIST database. Chapter 10, Combining Different Algorithms into an Ensemble, will show you how to effectively combine multiple algorithms into an ensemble in order to overcome the weaknesses of individual learners, resulting in more accurate and reliable predictions. Chapter 11, Selecting the Right Model with Hyper-Parameter Tuning, will introduce you to the concept of model selection, which allows you to compare different machine learning algorithms in order to select the right tool for the task at hand. Chapter 12, Wrapping Up, will conclude the book by giving you some useful tips on how to approach future machine learning problems on your own, and where to find information on more advanced topics.
- 197KB
OpenCV+MediaPipe手势识别追踪(AI人工智能计算机视觉图像处理) 计算机视觉.pdf
2022-04-2112. 机器学习(Machine Learning):是指使用机器学习算法来识别和分类图像的技术。机器学习是计算机视觉和人工智能的核心技术,广泛应用于图像识别、人脸识别、物体检测等领域。 本文档主要介绍了使用OpenCV和...
- 844KB
使用opencv进行图像处理
2011-05-17使用opencv进行图像处理 于仕琪德讲稿,包里还附带者一些简单的图像处理实例
- 311KB
opencv-tutorial-a-guide-to-learn-opencv
2019-06-064. **机器学习(Machine Learning)**:包括支持向量机(SVM)、决策树、随机森林等。 5. **三维视觉(3D Vision)**:立体视觉和重建。 6. **视频处理(Video Processing)**:运动分析、背景分离等。 ### 二、...
- 27.14MB
Machine Learning for OpenCV
2019-01-18机器学习应用于opencv,该书是英文版,比较详细介绍了openCV与机器学习相结合的知识点,是一本不错的书籍。
- 78.27MB
Machine Learning for OpenCV__
2020-10-07向您介绍统计学习的基本概念,例如分类和回归。一旦涵盖了所有基础知识,您将开始探索各种算法,例如决策树,支持向量机和贝叶斯网络,并学习如何将它们与其他OpenCV功能相结合。随着本书的进展,您的机器学习技能也将如此,直到您准备好接受当今最热门的话题:深度学习。本书面向熟悉OpenCV的Python程序员;本书将为您提供构建自己的机器学习系统所需的工具和理解,并根据实际的实际任务量身定制。
- 204KB
PythonOpenCV基础教程.pdf
2023-06-11PythonOpenCV基础教程 Python OpenCV 基础教程 ⽂章⽬录 1. 简介 2. 安装 conda install opencv 3. 使⽤ 3.1 图像操作:加载,显⽰,保存 3.1.1 读⼊图像: cv2.imread() 调⽤: cv2模块 init def imread(filename, flags=None): 从⽂件中加载图像。 函数 imread 从指定的⽂件加载图像并返回它。如果图像不能读取(由于缺少⽂件、不正确的权限、不⽀持或⽆效格式),该函数返回⼀个空 矩阵(Mat::data=null) ⽬前,⽀持以下⽂件格式: . Windows位图-*.bmp,*.dib(始终⽀持) . -JPEG⽂件-.jpeg,.jpg,.jpe(参见Notes *部分) . -JPEG 2000⽂件-**JP2(见*Notes *部分) . -便携式⽹络图形-.pNG(见Notes *部分) . - WebP -*.Webp(见**注释部分) . -便携式图像格式-**PBM,*.PGM,*ppm .pxm,.pnm(始终⽀持) . -太阳光栅-*.Sr,*.ras
- 93.27MB
Machine-Learning-for-OpenCV-Intelligent-image-processing-with-Python
2021-07-13《机器学习与OpenCV:用Python实现智能图像处理》是一本专为初学者设计的教程,旨在引导读者掌握如何利用Python和OpenCV库进行高级的图像处理和机器学习任务。OpenCV(开源计算机视觉库)是计算机视觉领域的常用工具...
- 142KB
Python中使用OpenCV库来进行简单的气象学遥感影像计算
2020-09-21主要介绍了Python中使用OpenCV库来进行简单的气象学图像计算的例子,文中是用来进行光谱辐射定标、大气校正和计算反射率,需要的朋友可以参考下
- 5.97MB
opencv-machine-learning-master_stage4aj_python_opencv_machinelea
2021-09-11【标题】"opencv-machine-learning-master_stage4aj_python_opencv_machinelea" 暗示这是一个关于OpenCV和机器学习的项目,特别关注Python编程语言。在这个项目中,开发者可能正在研究如何利用OpenCV库进行图像处理...
- 25.71MB
Machine Learning for OpenCV_ Intelligent image processing with Python.pdf
2019-06-01Chapter 1: A Taste of Machine Learning Chapter 2: Working with Data in OpenCV and Python Chapter 3: First Steps in Supervised Learning Chapter 4: Representing Data and Engineering Features Chapter 5: Using Decision Trees to Make a Medical Diagnosis Chapter 6: Detecting Pedestrians with Support Vector Machines Chapter 7: Implementing a Spam Filter with Bayesian Learning Chapter 8: Discovering Hidden Structures with Unsupervised Learning Chapter 9: Using Deep Learning to Classify Handwritten Digits Chapter 10: Combining Different Algorithms into an Ensemble Chapter 11: Selecting the Right Model with Hyperparameter Tuning Chapter 12: Wrapping Up
- 4.79MB
OpenCV-Python-Toturial-中文版.pdf
2018-07-31在 Python 下使用 OpenCV 的书,除了这本在线教程之外,仅有一个 100 多页的书 opencv computer vision with python(本 书虽然挺好的,但是不够全面,不能让读者完全了解 opencv 的现状)。而 我翻译的这本书是来源于 OpenCV 的官方文档,内容全面,对各种的算 法的描述简单易懂,而且不拘泥于长篇大论的数学推导,非常适合想使用 OpenCV 解决实际问题的人,对他们来说具体的数学原理并不重要,重要 是能解决实际问题。在国内这本书可以说是第一本 Python_OpenCV 的译作。
- 59KB
Python机器学习教程.docx
2022-04-19- 对于图像和视频,可以利用OpenCV进行图像处理。 4. **机器学习算法和工具**: - 一旦数据准备就绪,就需要学习并应用机器学习算法,如线性回归、决策树、随机森林、支持向量机等。 - Scikit-learn是Python中最...
- 6.73MB
Learning Image Processing with OpenCV pdf + code
2018-05-24Learning Image Processing with OpenCV 英文原版pdf 及配套Code源码 本资源来自自网络,如有侵权,请联系上传者或csdn删除
- 13.44MB
基于opencv的机器学习与结果预测
2012-10-31本例基于opencv,实现了决策树。随机森林 boost 并分别将训练得到的分离器用于预测