下载 >  行业 >  互联网 > ImageNet_Classification_with_Deep_Convolutional_Neural_Networks

ImageNet_Classification_with_Deep_Convolutional_Neural_Networks 评分:

ImageNet_Classification_with_Deep_Convolutional_Neural_Networks.pdf
2014-06-09 上传大小:1.35MB
想读
分享
收藏 举报

评论 共1条

a20083017 深度卷积网络~学习ing
2014-11-20
回复
[深度学习] 图像反卷积的深度积神经网络 Deep Convolutional Neural Network for Image Deconvolution
ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks

立即下载
NIPS2012-ImageNet Classification with Deep Convolutional Neural Networks

图像分类的一个里程碑,另外一个经典的CNN网络!

立即下载
ImageNet classification with deep convolutional neural networks中文翻译

ImageNet classification with deep convolutional neural networks 中文翻译

立即下载
ImageNet Classification with Deep Convolutional Neural Networks的翻译

ImageNet Classification with Deep Convolutional Neural Networks的翻译

立即下载
Recurrent Convolutional Neural Networks for Text Classification

找到了国外的一篇文章《Recurrent Convolutional Neural Network For Text Classification》

立即下载
AlexNet - ImageNet Classification with Deep Convolutional Neural Networks 译文

AlexNet - ImageNet Classification with Deep Convolutional Neural Networks 译文

立即下载
Multi-focus image fusion with a deep convolutional neural network

本论文是最近发表的关于神经网络算法对多聚焦融合的一个改进算法,效果很好。

立即下载
ImageNet Classification with Deep Convolutional Neural Network

ImageNet Classification with Deep Convolutional Neural Network

立即下载
Relation Classification via Convolutional Deep Neural Network

The state-of-the-art methods used for relation classification are primarily based on statistical machine learning, and their performance strongly depends on the quality of the extracted features. The extracted features are often derived from the output of pre-existing natural language processing (NL

立即下载
Deep Learning and Convolutional Neural Networks for Medical Image Computing

Deep Learning and Convolutional Neural Networks for Medical Image Computing: Precision Medicine, High Performance and Large-Scale Datasets (Advances in Computer Vision and Pattern Recognition) by Le Lu, Yefeng Zheng, Gustavo Carneiro, Lin Yang 2017 | ISBN: 3319429981 | English | 326 pages | PDF | 14

立即下载
Practical Convolutional Neural Networks

“Practical Convolutional Neural Networks: Implement advanced deep learning models using Python” Md. Rezaul Karim,Mohit Sewak,Pradeep Pujari 2018年2月 epub文件,内含示例源码

立即下载
Multi-column Deep Neural Networks for Image Classification

Multi-column Deep Neural Networks for Image Classification

立即下载
四大经典CNN架构之一(ALexNet)

本资源详细解读了经典论文ImageNet Classification with Deep Convolutional Neural Networks,主要介绍ALexNet的架构、特点、计算流程

立即下载
Deep Inside Convolutional Networks

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

立即下载
Convolutional Neural Networks for Sentence Classification

十分好的文章。

立即下载
Real-Time Grasp Detection Using Convolutional Neural Networks

机械臂

立即下载
PYNQ Classification - Python on Zynq FPGA for Neural Networks

PYNQ Classification - Python on Zynq FPGA for Neural Networks

立即下载
Learning a Deep Convolutional Network for Image Super-Resolution

Learning a Deep Convolutional Network for Image Super-Resolution

立即下载
图谱卷积论文(Convolutional Neural Networks on Graphs)

《Convolutional Neural Networks on Graphs》,目前对非矩阵向量卷积学习最深入的论文,发表人多年来始终在图谱卷积方向努力。

立即下载
img

spring mvc+mybatis+mysql+maven+bootstrap 整合实现增删查改简单实例.zip

资源所需积分/C币 当前拥有积分 当前拥有C币
5 0 0
点击完成任务获取下载码
输入下载码
为了良好体验,不建议使用迅雷下载
img

ImageNet_Classification_with_Deep_Convolutional_Neural_Networks

会员到期时间: 剩余下载个数: 剩余C币: 剩余积分:0
为了良好体验,不建议使用迅雷下载
VIP下载
您今日下载次数已达上限(为了良好下载体验及使用,每位用户24小时之内最多可下载20个资源)

积分不足!

资源所需积分/C币 当前拥有积分
您可以选择
开通VIP
4000万
程序员的必选
600万
绿色安全资源
现在开通
立省522元
或者
购买C币兑换积分 C币抽奖
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
为了良好体验,不建议使用迅雷下载
确认下载
img

资源所需积分/C币 当前拥有积分 当前拥有C币
10 0 0
为了良好体验,不建议使用迅雷下载
VIP和C币套餐优惠
img

资源所需积分/C币 当前拥有积分 当前拥有C币
5 4 45
您的积分不足,将扣除 10 C币
为了良好体验,不建议使用迅雷下载
确认下载
下载
您还未下载过该资源
无法举报自己的资源

兑换成功

你当前的下载分为234开始下载资源
你还不是VIP会员
开通VIP会员权限,免积分下载
立即开通

你下载资源过于频繁,请输入验证码

您因违反CSDN下载频道规则而被锁定帐户,如有疑问,请联络:webmaster@csdn.net!

举报

  • 举报人:
  • 被举报人:
  • *类型:
    • *投诉人姓名:
    • *投诉人联系方式:
    • *版权证明:
  • *详细原因: