{ ∧-intro on (4) and (8): }
(9) (R ⇒ (P ⇒ Q)) ∧ ((P ∧ R) ⇒ Q)
{ ⇒-intro on (1) and (9): }
(10) (P ⇒ Q) ⇒ ((R ⇒ (P ⇒ Q)) ∧ ((P ∧ R) ⇒ Q))
13.1 (b) (1): valid from (1) to (9)
(2): valid from (2) to (3)
(3): only valid on (3)
(4): valid from (4) to (9)
(5): valid from (5) to (7)
(6): valid from (6) to (7)
(7): only valid on (7)
(8): valid from (8) to (9)
(9): only valid on (9)
(10): valid forever.
13.2 (b) (1): context consists of hypothesis on (1)
(2): context consists of hypotheses on (1) and (2)
(3): context consists of hypotheses on (1) and (2)
(4): context consists of hypothesis on (1)
(5): context consists of hypotheses on (1) and (5)
(6): context consists of hypotheses on (1) and (5)
(7): context consists of hypotheses on (1) and (5)
(8): context consists of hypothesis on (1)
(9): context consists of hypothesis on (1)
(10): context is empty.
14.2 (a) The following derivation shows that the formula
(P ⇒ ¬Q) ⇒ ((P ⇒ Q) ⇒ ¬P )
is a tautology:
{ Assume: }
(1) P ⇒ ¬Q
{ Assume: }
(2) P ⇒ Q
{ Assume: }
(3) P
{ ⇒-elim on (1) and (3): }
(4) ¬Q
{ ⇒-elim on (2) and (3): }
(5) Q
{ ¬-elim on (4) and (5): }
2
评论0
最新资源