# Multi-Object Tracking with Ultralytics YOLO
<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418637-1d6250fd-1515-4c10-a844-a32818ae6d46.png" alt="YOLOv8 trackers visualization">
Object tracking in the realm of video analytics is a critical task that not only identifies the location and class of objects within the frame but also maintains a unique ID for each detected object as the video progresses. The applications are limitless—ranging from surveillance and security to real-time sports analytics.
## Why Choose Ultralytics YOLO for Object Tracking?
The output from Ultralytics trackers is consistent with standard object detection but has the added value of object IDs. This makes it easy to track objects in video streams and perform subsequent analytics. Here's why you should consider using Ultralytics YOLO for your object tracking needs:
- **Efficiency:** Process video streams in real-time without compromising accuracy.
- **Flexibility:** Supports multiple tracking algorithms and configurations.
- **Ease of Use:** Simple Python API and CLI options for quick integration and deployment.
- **Customizability:** Easy to use with custom trained YOLO models, allowing integration into domain-specific applications.
**Video Tutorial:** [Object Detection and Tracking with Ultralytics YOLOv8](https://www.youtube.com/embed/hHyHmOtmEgs?si=VNZtXmm45Nb9s-N-).
## Features at a Glance
Ultralytics YOLO extends its object detection features to provide robust and versatile object tracking:
- **Real-Time Tracking:** Seamlessly track objects in high-frame-rate videos.
- **Multiple Tracker Support:** Choose from a variety of established tracking algorithms.
- **Customizable Tracker Configurations:** Tailor the tracking algorithm to meet specific requirements by adjusting various parameters.
## Available Trackers
Ultralytics YOLO supports the following tracking algorithms. They can be enabled by passing the relevant YAML configuration file such as `tracker=tracker_type.yaml`:
- [BoT-SORT](https://github.com/NirAharon/BoT-SORT) - Use `botsort.yaml` to enable this tracker.
- [ByteTrack](https://github.com/ifzhang/ByteTrack) - Use `bytetrack.yaml` to enable this tracker.
The default tracker is BoT-SORT.
## Tracking
To run the tracker on video streams, use a trained Detect, Segment or Pose model such as YOLOv8n, YOLOv8n-seg and YOLOv8n-pose.
#### Python
```python
from ultralytics import YOLO
# Load an official or custom model
model = YOLO("yolov8n.pt") # Load an official Detect model
model = YOLO("yolov8n-seg.pt") # Load an official Segment model
model = YOLO("yolov8n-pose.pt") # Load an official Pose model
model = YOLO("path/to/best.pt") # Load a custom trained model
# Perform tracking with the model
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True
) # Tracking with default tracker
results = model.track(
source="https://youtu.be/LNwODJXcvt4", show=True, tracker="bytetrack.yaml"
) # Tracking with ByteTrack tracker
```
#### CLI
```bash
# Perform tracking with various models using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" # Official Detect model
yolo track model=yolov8n-seg.pt source="https://youtu.be/LNwODJXcvt4" # Official Segment model
yolo track model=yolov8n-pose.pt source="https://youtu.be/LNwODJXcvt4" # Official Pose model
yolo track model=path/to/best.pt source="https://youtu.be/LNwODJXcvt4" # Custom trained model
# Track using ByteTrack tracker
yolo track model=path/to/best.pt tracker="bytetrack.yaml"
```
As can be seen in the above usage, tracking is available for all Detect, Segment and Pose models run on videos or streaming sources.
## Configuration
### Tracking Arguments
Tracking configuration shares properties with Predict mode, such as `conf`, `iou`, and `show`. For further configurations, refer to the [Predict](https://docs.ultralytics.com/modes/predict/) model page.
#### Python
```python
from ultralytics import YOLO
# Configure the tracking parameters and run the tracker
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", conf=0.3, iou=0.5, show=True
)
```
#### CLI
```bash
# Configure tracking parameters and run the tracker using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" conf=0.3, iou=0.5 show
```
### Tracker Selection
Ultralytics also allows you to use a modified tracker configuration file. To do this, simply make a copy of a tracker config file (for example, `custom_tracker.yaml`) from [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) and modify any configurations (except the `tracker_type`) as per your needs.
#### Python
```python
from ultralytics import YOLO
# Load the model and run the tracker with a custom configuration file
model = YOLO("yolov8n.pt")
results = model.track(
source="https://youtu.be/LNwODJXcvt4", tracker="custom_tracker.yaml"
)
```
#### CLI
```bash
# Load the model and run the tracker with a custom configuration file using the command line interface
yolo track model=yolov8n.pt source="https://youtu.be/LNwODJXcvt4" tracker='custom_tracker.yaml'
```
For a comprehensive list of tracking arguments, refer to the [ultralytics/cfg/trackers](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/trackers) page.
## Python Examples
### Persisting Tracks Loop
Here is a Python script using OpenCV (`cv2`) and YOLOv8 to run object tracking on video frames. This script still assumes you have already installed the necessary packages (`opencv-python` and `ultralytics`). The `persist=True` argument tells the tracker than the current image or frame is the next in a sequence and to expect tracks from the previous image in the current image.
#### Python
```python
import cv2
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("yolov8n.pt")
# Open the video file
video_path = "path/to/video.mp4"
cap = cv2.VideoCapture(video_path)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 tracking on the frame, persisting tracks between frames
results = model.track(frame, persist=True)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Tracking", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()
```
Please note the change from `model(frame)` to `model.track(frame)`, which enables object tracking instead of simple detection. This modified script will run the tracker on each frame of the video, visualize the results, and display them in a window. The loop can be exited by pressing 'q'.
### Plotting Tracks Over Time
Visualizing object tracks over consecutive frames can provide valuable insights into the movement patterns and behavior of detected objects within a video. With Ultralytics YOLOv8, plotting these tracks is a seamless and efficient process.
In the following example, we demonstrate how to utilize YOLOv8's tracking capabilities to plot the movement of detected objects across multiple video frames. This script involves opening a video file, reading it frame by frame, and utilizing the YOLO model to identify and track various objects. By retaining the center points of the detected bounding boxes and connecting them, we can draw lines that represent the paths followed by the tracked objects.
#### Python
```python
from collections import defaultdict
import cv2
import numpy as np
from ultralytics import YOLO
# Load the YOLOv8 model
model = YOLO("y
没有合适的资源?快使用搜索试试~ 我知道了~
yolov10完整源码+权重文件
共855个文件
md:301个
py:157个
pyc:114个
需积分: 0 110 下载量 12 浏览量
2024-07-03
22:41:43
上传
评论 2
收藏 273.64MB ZIP 举报
温馨提示
资源描述:YOLOv10是清华大学研究人员所研发的一种新的实时目标检测方法,解决了YOLO以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10在显著降低计算开销的同时实现了最先进的性能。并用大量实验证明,YOLOv10在多个模型尺度上实现了卓越的精度-延迟权衡。 适用人群:在校大学生、人工智能爱好者等。
资源推荐
资源详情
资源评论
收起资源包目录
yolov10完整源码+权重文件 (855个子文件)
events.out.tfevents.1720015994.sunzhandong.16340.0 92KB
main.cc 10KB
CNAME 21B
inference.cpp 13KB
inference.cpp 6KB
main.cpp 5KB
main.cpp 2KB
style.css 1KB
results.csv 47KB
Dockerfile 4KB
Dockerfile-arm64 2KB
Dockerfile-conda 2KB
Dockerfile-cpu 3KB
Dockerfile-jetson 2KB
Dockerfile-python 2KB
Dockerfile-runner 2KB
.gitignore 2KB
.gitignore 50B
inference.h 2KB
inference.h 2KB
comments.html 2KB
source-file.html 858B
main.html 439B
favicon.ico 9KB
yolov10-main.iml 620B
tutorial.ipynb 35KB
explorer.ipynb 22KB
object_tracking.ipynb 8KB
object_counting.ipynb 6KB
heatmaps.ipynb 6KB
hub.ipynb 4KB
val_batch1_pred.jpg 564KB
val_batch1_pred_100_c6518c9bd9718c3833e5.jpg 564KB
val_batch1_pred_100_c6518c9bd9718c3833e5.jpg 564KB
val_batch1_labels.jpg 562KB
val_batch1_labels_100_25c8baa0e90db1150cb1.jpg 562KB
val_batch1_labels_100_25c8baa0e90db1150cb1.jpg 562KB
val_batch1_labels_100_25c8baa0e90db1150cb1.jpg 562KB
val_batch1_pred_100_5aa1241dd340a2d5a77c.jpg 559KB
val_batch0_pred.jpg 533KB
val_batch0_pred_100_6ad3812fe26abb565f75.jpg 533KB
val_batch0_pred_100_6ad3812fe26abb565f75.jpg 533KB
val_batch0_pred_100_451ccb5e36951a4eaade.jpg 526KB
val_batch0_labels.jpg 525KB
val_batch0_labels_100_c5aa50661e5958c90fb7.jpg 525KB
val_batch0_labels_100_c5aa50661e5958c90fb7.jpg 525KB
val_batch0_labels_100_c5aa50661e5958c90fb7.jpg 525KB
train_batch2.jpg 500KB
train_batch2_1_6369ed83b5b44283c4f2.jpg 500KB
train_batch2_1_6369ed83b5b44283c4f2.jpg 500KB
train_batch2_1_6369ed83b5b44283c4f2.jpg 500KB
train_batch2_1_6369ed83b5b44283c4f2.jpg 500KB
train_batch2_1_6369ed83b5b44283c4f2.jpg 500KB
train_batch1.jpg 472KB
train_batch1_1_05f58f0b5f6bfb64db5e.jpg 472KB
train_batch1_1_05f58f0b5f6bfb64db5e.jpg 472KB
train_batch1_1_05f58f0b5f6bfb64db5e.jpg 472KB
train_batch1_1_05f58f0b5f6bfb64db5e.jpg 472KB
train_batch1_1_05f58f0b5f6bfb64db5e.jpg 472KB
train_batch0.jpg 447KB
train_batch0_1_2261b7445d9a1084198e.jpg 447KB
train_batch0_1_2261b7445d9a1084198e.jpg 447KB
train_batch0_1_2261b7445d9a1084198e.jpg 447KB
train_batch0_1_2261b7445d9a1084198e.jpg 447KB
train_batch0_1_2261b7445d9a1084198e.jpg 447KB
train_batch3060.jpg 385KB
train_batch3060_91_563ee83cda9b739712cb.jpg 385KB
train_batch3060_91_563ee83cda9b739712cb.jpg 385KB
train_batch3060_91_563ee83cda9b739712cb.jpg 385KB
train_batch3061.jpg 376KB
train_batch3061_91_b8206ecc4a70f656ebca.jpg 376KB
train_batch3061_91_b8206ecc4a70f656ebca.jpg 376KB
train_batch3061_91_b8206ecc4a70f656ebca.jpg 376KB
train_batch3062.jpg 324KB
train_batch3062_91_d7e13b155ab2a66959a0.jpg 324KB
train_batch3062_91_d7e13b155ab2a66959a0.jpg 324KB
train_batch3062_91_d7e13b155ab2a66959a0.jpg 324KB
labels_correlogram.jpg 208KB
labels.jpg 146KB
labels_1_aaabc835c5cdf05e1285.jpg 146KB
labels_1_aaabc835c5cdf05e1285.jpg 146KB
labels_1_aaabc835c5cdf05e1285.jpg 146KB
labels_1_aaabc835c5cdf05e1285.jpg 146KB
labels_1_aaabc835c5cdf05e1285.jpg 146KB
bus.jpg 134KB
zidane.jpg 49KB
extra.js 3KB
wandb-summary.json 8KB
wandb-summary.json 8KB
Recall-Confidence(B)_table_100_c8cdb4ef0c506836faa8.table.json 8KB
Recall-Confidence(B)_table_100_c8cdb4ef0c506836faa8.table.json 8KB
F1-Confidence(B)_table_100_6aa753c8f71545d87ac0.table.json 8KB
F1-Confidence(B)_table_100_6aa753c8f71545d87ac0.table.json 8KB
Recall-Confidence(B)_table_100_c90051b1bc08d38dff47.table.json 8KB
F1-Confidence(B)_table_100_8da4ce85c0840e30d141.table.json 8KB
Precision-Confidence(B)_table_100_642ddcd0220414399076.table.json 7KB
Precision-Confidence(B)_table_100_642ddcd0220414399076.table.json 7KB
Precision-Recall(B)_table_100_a56d0004e6287865aa02.table.json 7KB
Precision-Confidence(B)_table_100_4fc944ee3c58fbbd966c.table.json 7KB
Precision-Recall(B)_table_100_da83c215a572bb92c4bc.table.json 7KB
共 855 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论
小哥谈
- 粉丝: 1w+
- 资源: 32
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功