<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov5" target="_blank">
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv5 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
```
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov5">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https:/
没有合适的资源?快使用搜索试试~ 我知道了~
YOLOv5行人检测训练权重 +3000行人数据集 yolov5-6.0-person_detect.zip
共2000个文件
jpg:3293个
txt:3184个
yaml:42个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
5星 · 超过95%的资源 15 下载量 101 浏览量
2022-05-21
22:24:42
上传
评论 22
收藏 378.52MB ZIP 举报
温馨提示
1、YOLOv5行人检测训练权重 ,附有各种训练曲线图 2、场景:街道,公路行人检测,一万多数据训练得到,准确率达90%以上, 3、classes: person 4、并包含3000张多行人数据,标签格式为VOC和YOLO两种 5、检测结果和数据集参考:https://blog.csdn.net/weixin_51154380/article/details/124480876
资源推荐
资源详情
资源评论
收起资源包目录
YOLOv5行人检测训练权重 +3000行人数据集 yolov5-6.0-person_detect.zip (2000个子文件)
README.md 14KB
README.md 10KB
CONTRIBUTING.md 5KB
README.md 2KB
bug-report.md 1KB
feature-request.md 739B
question.md 139B
datasets.py 43KB
general.py 33KB
train.py 31KB
wandb_utils.py 25KB
tf.py 20KB
common.py 20KB
plots.py 19KB
val.py 17KB
export.py 16KB
detect.py 15KB
yolo.py 14KB
torch_utils.py 14KB
metrics.py 13KB
augmentations.py 11KB
loss.py 9KB
autoanchor.py 7KB
__init__.py 6KB
hubconf.py 6KB
downloads.py 6KB
experimental.py 4KB
activations.py 4KB
callbacks.py 2KB
resume.py 1KB
restapi.py 1KB
sweep.py 989B
log_dataset.py 891B
example_request.py 299B
__init__.py 0B
__init__.py 0B
__init__.py 0B
__init__.py 0B
userdata.sh 1KB
get_coco.sh 900B
mime.sh 780B
get_coco128.sh 615B
download_weights.sh 443B
person_10_2160.txt 2KB
person-1_00134.txt 2KB
person-1_00122.txt 2KB
person_10_1701.txt 2KB
person-1_00588.txt 2KB
person-1_00127.txt 2KB
person-1_00461.txt 2KB
person-1_00463.txt 2KB
person-1_00126.txt 2KB
person-1_00570.txt 2KB
person-1_00586.txt 2KB
person-1_00574.txt 2KB
person-1_00571.txt 2KB
person-1_00107.txt 2KB
person-1_00457.txt 2KB
person-1_00118.txt 2KB
person-1_00129.txt 2KB
person-1_00591.txt 2KB
person-1_00264.txt 2KB
person-1_00454.txt 2KB
person-1_00585.txt 2KB
person-1_00273.txt 2KB
00119.txt 2KB
person-1_00449.txt 2KB
person-1_00143.txt 2KB
00111.txt 2KB
person-1_00582.txt 2KB
person-1_00114.txt 2KB
person-1_00440.txt 2KB
person-1_00441.txt 2KB
person-1_00556.txt 2KB
person-1_00111.txt 2KB
person-1_00488.txt 2KB
person-1_00137.txt 2KB
person-1_00272.txt 2KB
person-1_00554.txt 2KB
person-1_00308.txt 2KB
person-1_00482.txt 2KB
00125.txt 2KB
person-1_00492.txt 2KB
person-1_00551.txt 2KB
person-1_00523.txt 2KB
person-1_00543.txt 2KB
person-1_00103.txt 2KB
person-1_00476.txt 2KB
person-1_00358.txt 2KB
person-1_00430.txt 2KB
00022.txt 2KB
person-1_00104.txt 2KB
person-1_00295.txt 2KB
person-1_00584.txt 2KB
person-1_00271.txt 2KB
00126.txt 2KB
person-1_00594.txt 2KB
person-1_00146.txt 2KB
00122.txt 2KB
person-1_00301.txt 2KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
XTX_AI
- 粉丝: 5642
- 资源: 318
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Spring Boot框架的资源管理系统.zip
- 管道通信源码,希望大家一起学习
- 特色软著登记-源代码生成器:输入项目路径即可自动生成所需-`docx`-文档-china-softwps软件下载
- 干货分享基于SSM的体育场管理系统的开题报告(附源码下载地址
- 这里是我的《算法竞赛进阶指南》笔记及源代码
- 串口通信调试助手源码,请自取
- 基于Spring Boot框架的论坛管理系统.zip
- 基于Spring Boot框架的订单管理系统21e11038396313c7a5e6fdde47d0b61b.zip
- [Xilinx-Vivado官方手册]UG910-vivado-getting-started-en-us-2024.1
- pythonsoftware.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
- 1
- 2
- 3
前往页