===========
NumPy C-API
===========
::
unsigned int
PyArray_GetNDArrayCVersion(void )
Included at the very first so not auto-grabbed and thus not labeled.
::
int
PyArray_SetNumericOps(PyObject *dict)
Set internal structure with number functions that all arrays will use
::
PyObject *
PyArray_GetNumericOps(void )
Get dictionary showing number functions that all arrays will use
::
int
PyArray_INCREF(PyArrayObject *mp)
For object arrays, increment all internal references.
::
int
PyArray_XDECREF(PyArrayObject *mp)
Decrement all internal references for object arrays.
(or arrays with object fields)
::
void
PyArray_SetStringFunction(PyObject *op, int repr)
Set the array print function to be a Python function.
::
PyArray_Descr *
PyArray_DescrFromType(int type)
Get the PyArray_Descr structure for a type.
::
PyObject *
PyArray_TypeObjectFromType(int type)
Get a typeobject from a type-number -- can return NULL.
New reference
::
char *
PyArray_Zero(PyArrayObject *arr)
Get pointer to zero of correct type for array.
::
char *
PyArray_One(PyArrayObject *arr)
Get pointer to one of correct type for array
::
PyObject *
PyArray_CastToType(PyArrayObject *arr, PyArray_Descr *dtype, int
is_f_order)
For backward compatibility
Cast an array using typecode structure.
steals reference to dtype --- cannot be NULL
This function always makes a copy of arr, even if the dtype
doesn't change.
::
int
PyArray_CastTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array.
::
int
PyArray_CastAnyTo(PyArrayObject *out, PyArrayObject *mp)
Cast to an already created array. Arrays don't have to be "broadcastable"
Only requirement is they have the same number of elements.
::
int
PyArray_CanCastSafely(int fromtype, int totype)
Check the type coercion rules.
::
npy_bool
PyArray_CanCastTo(PyArray_Descr *from, PyArray_Descr *to)
leaves reference count alone --- cannot be NULL
PyArray_CanCastTypeTo is equivalent to this, but adds a 'casting'
parameter.
::
int
PyArray_ObjectType(PyObject *op, int minimum_type)
Return the typecode of the array a Python object would be converted to
Returns the type number the result should have, or NPY_NOTYPE on error.
::
PyArray_Descr *
PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
new reference -- accepts NULL for mintype
::
PyArrayObject **
PyArray_ConvertToCommonType(PyObject *op, int *retn)
::
PyArray_Descr *
PyArray_DescrFromScalar(PyObject *sc)
Return descr object from array scalar.
New reference
::
PyArray_Descr *
PyArray_DescrFromTypeObject(PyObject *type)
::
npy_intp
PyArray_Size(PyObject *op)
Compute the size of an array (in number of items)
::
PyObject *
PyArray_Scalar(void *data, PyArray_Descr *descr, PyObject *base)
Get scalar-equivalent to a region of memory described by a descriptor.
::
PyObject *
PyArray_FromScalar(PyObject *scalar, PyArray_Descr *outcode)
Get 0-dim array from scalar
0-dim array from array-scalar object
always contains a copy of the data
unless outcode is NULL, it is of void type and the referrer does
not own it either.
steals reference to outcode
::
void
PyArray_ScalarAsCtype(PyObject *scalar, void *ctypeptr)
Convert to c-type
no error checking is performed -- ctypeptr must be same type as scalar
in case of flexible type, the data is not copied
into ctypeptr which is expected to be a pointer to pointer
::
int
PyArray_CastScalarToCtype(PyObject *scalar, void
*ctypeptr, PyArray_Descr *outcode)
Cast Scalar to c-type
The output buffer must be large-enough to receive the value
Even for flexible types which is different from ScalarAsCtype
where only a reference for flexible types is returned
This may not work right on narrow builds for NumPy unicode scalars.
::
int
PyArray_CastScalarDirect(PyObject *scalar, PyArray_Descr
*indescr, void *ctypeptr, int outtype)
Cast Scalar to c-type
::
PyObject *
PyArray_ScalarFromObject(PyObject *object)
Get an Array Scalar From a Python Object
Returns NULL if unsuccessful but error is only set if another error occurred.
Currently only Numeric-like object supported.
::
PyArray_VectorUnaryFunc *
PyArray_GetCastFunc(PyArray_Descr *descr, int type_num)
Get a cast function to cast from the input descriptor to the
output type_number (must be a registered data-type).
Returns NULL if un-successful.
::
PyObject *
PyArray_FromDims(int nd, int *d, int type)
Construct an empty array from dimensions and typenum
::
PyObject *
PyArray_FromDimsAndDataAndDescr(int nd, int *d, PyArray_Descr
*descr, char *data)
Like FromDimsAndData but uses the Descr structure instead of typecode
as input.
::
PyObject *
PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int
min_depth, int max_depth, int flags, PyObject
*context)
Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
Steals a reference to newtype --- which can be NULL
::
PyObject *
PyArray_EnsureArray(PyObject *op)
This is a quick wrapper around
PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
that special cases Arrays and PyArray_Scalars up front
It *steals a reference* to the object
It also guarantees that the result is PyArray_Type
Because it decrefs op if any conversion needs to take place
so it can be used like PyArray_EnsureArray(some_function(...))
::
PyObject *
PyArray_EnsureAnyArray(PyObject *op)
::
PyObject *
PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char
*sep)
Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
array corresponding to the data encoded in that file.
If the dtype is NULL, the default array type is used (double).
If non-null, the reference is stolen and if dtype->subarray is true dtype
will be decrefed even on success.
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
For memory-mapped files, use the buffer interface. No more data than
necessary is read by this routine.
::
PyObject *
PyArray_FromString(char *data, npy_intp slen, PyArray_Descr
*dtype, npy_intp num, char *sep)
Given a pointer to a string ``data``, a string length ``slen``, and
a ``PyArray_Descr``, return an array corresponding to the data
encoded in that string.
If the dtype is NULL, the default array type is used (double).
If non-null, the reference is stolen.
If ``slen`` is < 0, then the end of string is used for text data.
It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
would be the norm).
The number of elements to read is given as ``num``; if it is < 0, then
then as many as possible are read.
If ``sep`` is NULL or empty, then binary data is assumed, else
text data, with ``sep`` as the separator between elements. Whitespace in
the separator matches any length of whitespace in the text, and a match
for whitespace around the separator is added.
::
PyObject *
PyArray_FromBuffer(PyObject *buf, PyArray_Descr *type, npy_intp
count, npy_intp offset)
::
PyObject *
PyArray_FromIter(PyObject *obj, PyArray_Descr *dtype, npy_intp count)
steals a reference to dtype (which cannot be NULL)
::
PyObject *
PyArray_Return(PyArrayObject *mp)
Return either an array or the appropriate Python object if the array
is 0d and matches a Python type.
steals reference to mp
::
PyObject *
PyArray_GetField(PyArrayObject *self, PyArray_Descr *typed, int
offset)
Get
没有合适的资源?快使用搜索试试~ 我知道了~
基于彩色图像中肤色区域检测系统的设计与实现源码+文档+全部资料+优秀项目.zip
共2000个文件
py:1279个
pyc:502个
txt:48个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 127 浏览量
2024-12-18
13:50:36
上传
评论
收藏 89.94MB ZIP 举报
温馨提示
【资源说明】 基于彩色图像中肤色区域检测系统的设计与实现源码+文档+全部资料+ 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
资源推荐
资源详情
资源评论
收起资源包目录
基于彩色图像中肤色区域检测系统的设计与实现源码+文档+全部资料+优秀项目.zip (2000个子文件)
fortranobject.c 35KB
wrapmodule.c 9KB
gfortran_vs2003_hack.c 77B
jquery-ui.css 36KB
jquery-ui.min.css 31KB
jquery-ui.structure.css 18KB
jquery-ui.theme.css 18KB
jquery-ui.structure.min.css 15KB
jquery-ui.theme.min.css 14KB
boilerplate.css 2KB
page.css 2KB
fbm.css 1KB
percent_bachelors_degrees_women_usa.csv 6KB
msft.csv 3KB
libopenblas.JKAMQ5EVHIVCPXP2XZJB2RQPIN47S32M.gfortran-win32.dll 26.43MB
msvcp140.dll 439KB
concrt140.dll 244KB
block.f 224B
foo.f 85B
.f2py_f2cmap 29B
constant_both.f90 2KB
foo.f90 815B
char.f90 618B
constant_integer.f90 612B
constant_real.f90 610B
constant_non_compound.f90 609B
foo_mod.f90 499B
constant_compound.f90 469B
foo_free.f90 460B
foo.f90 347B
inout.f90 277B
foo_use.f90 269B
foo_fixed.f90 179B
foo_free.f90 139B
precision.f90 130B
recarray_from_file.fits 8KB
ct.raw.gz 250KB
s1045.ima.gz 32KB
ndarraytypes.h 63KB
__multiarray_api.h 60KB
npy_common.h 36KB
npy_math.h 18KB
npy_3kcompat.h 14KB
wxpy_api.h 14KB
ufuncobject.h 13KB
__ufunc_api.h 12KB
ndarrayobject.h 11KB
randomkit.h 7KB
noprefix.h 7KB
old_defines.h 6KB
fortranobject.h 5KB
npy_1_7_deprecated_api.h 5KB
npy_cpu.h 4KB
arrayscalars.h 3KB
npy_interrupt.h 3KB
npy_endian.h 3KB
halffloat.h 2KB
_neighborhood_iterator_imp.h 2KB
numpyconfig.h 1KB
_numpyconfig.h 862B
npy_os.h 817B
utils.h 729B
oldnumeric.h 708B
npy_no_deprecated_api.h 567B
arrayobject.h 164B
index.html 32KB
default_help_text.html 4KB
all_figures.html 1KB
ipython_inline_figure.html 1KB
single_figure.html 1KB
npymath.ini 360B
mlib.ini 139B
INSTALLER 4B
nbagg_uat.ipynb 16KB
jquery-ui.js 509KB
jquery.js 287KB
jquery-1.11.3.js 278KB
jquery-ui.min.js 248KB
jquery-1.11.3.min.js 94KB
mpl.js 17KB
nbagg_mpl.js 7KB
mpl_tornado.js 272B
package.json 2KB
metadata.json 1KB
metadata.json 875B
metadata.json 496B
pip-selfcheck.json 61B
npymath.lib 90KB
CHANGELOG.md 6KB
README.md 695B
README.md 406B
METADATA 3KB
py3-objarr.npy 341B
py2-objarr.npy 258B
win64python2.npy 96B
python3.npy 96B
jacksboro_fault_dem.npz 170KB
goog.npz 22KB
py3-objarr.npz 449B
py2-objarr.npz 366B
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
Yuki-^_^
- 粉丝: 3107
- 资源: 4587
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 玩客云刷机包s805-flash-snail.img
- 基于置换技术和混沌混合的新图像加密算法
- javaweb笔记,包含了一些前端内容
- RGB-IR物体检测中的粗细融合视角与Redundant Spectrum Removal模块
- 2-给你的摄像头、麦克风加个开关
- 西门子s7-1200博图v16灌装机PLC程序+西门子KTP1200触摸屏程序,设备上已使用的程序 功能齐全 1200plc和3台v90伺服pn通讯, 3台施耐德ATV310H变频器485通讯, 2
- 基于通信信号的被动雷达技术与运动检测项目介绍及任务分解
- Matlab小波变双端行波测距凯伦布尔变放射状配电网单相故障测距Simulink模型及对应程序 配有对应说明及原理参考文献,适合初学者学习
- 西门子1200程序案例.zip
- 2-snipaste 简单但强大的截图工具
- 西门子SCL中文手册.rar
- 上虞525车间AHU101-V14.rar
- 用博途V15可以打开的S7-1200控制伺服电机程序.zip
- 通过Modbus-RTU协议实现S7-1200与仪表的通信.zip
- 2-localsend局域网共享v1.16.1.56
- 报文1+FB285.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功