<HTML>
<HEAD>
<TITLE> RAE 2822 Transonic Airfoil: Study #5 </TITLE>
<style type="text/css">
<!--
.style1 {color: #800000;
text-decoration: underline; }
.style2 {font-weight: bold;}
.style3 {color: #800000;}
.style4 {font-face:Courier New;
font-size: smaller;}
.style5 {color: #008B8B;}
-->
</style>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE"
VLINK="#551A8B" ALINK="#FF0000">
<!---------------------------------------------------------------------->
<!...Heading Information...>
<B>NPARC Alliance Validation Archive</B><BR>
<B><A HREF="../../homepage.html">
Validation Home</A></B> <B> > </B>
<B><A HREF="../../archive.html">
Archive</A></B> <B> > </B>
<B><A HREF="../raetaf.html">
RAE 2822 Transonic Airfoil</A></B> <B> > </B>
<B> Study #5 </B>
<HR>
<!---------------------------------------------------------------------->
<!...Title...>
<H2 align="center" class="style3">RAE 2822 Transonic Airfoil: Study #5 </H2>
<!---------------------------------------------------------------------->
<!...Image...>
<P align="center">
<IMG SRC="sst/mutwleg.jpeg" WIDTH = 50% alt="Figure 1 is described in the surrounding text"><BR>
<B>Figure 1. The turbulent viscosity contours for the RAE 2822 transonic airfoil for a simulation computed using the SST turbulence model.</B>
</P>
<!---------------------------------------------------------------------->
<H3 class="style1">Introduction</H3>
<P> This validation study examines the accuracy of Wind-US for computing
two-dimensional, turbulent, transonic flows about an airfoil. Nine
different turbulence models are used. The pressure coefficients
obtained from the Wind-US solutions are compared with the experimental
values obtained by RAE as reported in Ref. 1.</P>
<!---------------------------------------------------------------------->
<H3 class="style1">Grid</H3>
<P> The grid is a single-block, two-dimensional C-grid with dimensions
of 369 x 65. It is contained in the file <A HREF='run.cgd'>run.cgd</A>
and is in the Wind-US common grid file format (.cgd).
The airfoil surface and wake are located at the J1 boundary.
The I-coordinate starts at the lower downstream boundary, intersects
the sharp trailing edge at I33, proceeds along the bottom of the
airfoil, around the leading edge, downstream along the top of the
airfoil, intersects the trailing edge again at I337, and continues to
the outflow boundary. The JMAX grid line is the farfield boundary of
the flow domain. The grid is non-dimensionalized by the chord length.
Since WIND requires dimensional quantities and assumes English
Engineering units, the airfoil grid is assumed to have a chord of 1.0
ft. The grid normal to the airfoil surface is clustered about the
airfoil surface to resolve the boundary layer on the airfoil. The first
grid point off the wall is at a distance of 1.0E-05 ft from the airfoil
surface.</P>
<!---------------------------------------------------------------------->
<H3 class="style1">Boundary Conditions</H3>
<P> The boundary conditions must now be specified for the grid and this
is done with the GMAN utility. First, the boundary condition types are
summarized. A <B>VISCOUS WALL</B> boundary condition is applied at the
J1 boundary at the airfoil surface, which extends from I33 to I337.
The J1 boundary from I1 to I32 is coupled to the J1 boundary from I338
to IMAX (I369) to form the wake region. A <B>FREESTREAM</B> boundary
condition is applied at the JMAX boundary, which should all be subsonic
inflow at the freestream conditions. The I1 and IMAX boundaries are
specified as <B>OUTFLOW</B> boundaries which allows the static pressure
to be directly specified and is assumed to be equal to the freestream
pressure.</P>
<P> The boundary conditions can be set either by running GMAN in an
interactive mode or by creating an input data file and running GMAN
in batch mode. Here the input data file <A HREF="gman.com">gman.com</A>
was created and GMAN was executed as:</P>
<BLOCKQUOTE>
<B>gman <</B> <A HREF="gman.com">gman.com</A>
</BLOCKQUOTE>
<!---------------------------------------------------------------------->
<H3 class="style1">Computation Strategy</H3>
<P> The computation is performed using the time-marching capabilities
of WIND to march to a steady-state (time asymptotic) solution. Local
time stepping is used at each iteration. The time-marching is performed
until iterative convergence is achieved. The convergence criteria was
the lift and drag integrated over the airfoil surface.</P>
<!---------------------------------------------------------------------->
<H3 class="style1">Input Parameters and Files</H3>
<P> The input data file is read by WIND at startup to provide WIND with
information on performing the simulation. Ten different input data
files are available that differ by choice
of turbulence models. The input data <i>.dat</I> file
names and the corresponding turbulence models used
for each case are listed in Table 1, along
with some notes on variations on some of
the input parameters used. The resulting output <I>.lis</I> files and the solution <I>.cfl</I> files are also given.</P>
<TABLE BORDER CELLPADDING=7 align="center">
<CAPTION><B>Table 1. Summary of cases.</B></CAPTION>
<TR>
<TH scope="col">Input File Name</TH>
<TH>Output File Name</TH>
<TH>Solution File</TH>
<TH>Turbulence Model Used</TH>
<TH>Initial Conditions</TH>
<TH>Input Notes</TH>
</TR>
<TR>
<TD scope="row"> <A HREF = "laminar/rae.lam.dat">rae.lam.dat</A> </TD>
<TD> <A HREF = "laminar/rae.lam.lis">rae.lam.lis</A> </TD>
<TD> <A HREF = "laminar/rae.lam.cfl">rae.lam.cfl</A> </TD>
<TD> laminar </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "blomax/rae.blomax.dat">rae.blomax.dat</A> </TD>
<TD> <A HREF = "blomax/rae.blomax.lis">rae.blomax.lis</A> </TD>
<TD> <A HREF = "blomax/rae.blomax.cfl">rae.blomax.cfl</A> </TD>
<TD> Baldwin Lomax </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "pdt/rae.pdt.dat">rae.pdt.dat</A> </TD>
<TD> <A HREF = "pdt/rae.pdt.lis">rae.pdt.lis</A> </TD>
<TD> <A HREF = "pdt/rae.pdt.cfl">rae.pdt.cfl</A> </TD>
<TD> P. D. Thomas </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "bbarth/rae.bbarth.dat">rae.bbarth.dat</A> </TD>
<TD> <A HREF = "bbarth/rae.bbarth.lis">rae.bbarth.lis</A> </TD>
<TD> <A HREF = "bbarth/rae.bbarth.cfl">rae.bbarth.cfl</A> </TD>
<TD> Baldwin Barth </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "spalart/rae.spalart.dat">rae.spalart.dat</A> </TD>
<TD> <A HREF = "spalart/rae.spalart.lis">rae.spalart.lis</A> </TD>
<TD> <A HREF = "spalart/rae.spalart.cfl">rae.spalart.cfl</A> </TD>
<TD> Spalart Allmaras </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "sst/rae.sst.dat">rae.sst.dat</A> </TD>
<TD> <A HREF = "sst/rae.sst.lis">rae.sst.lis</A> </TD>
<TD> <A HREF = "sst/rae.sst.cfl">rae.sst.cfl</A> </TD>
<TD> Mentor SST </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "sst_comp/rae.sst_comp.dat">rae.sst_comp.dat</A> </TD>
<TD> <A HREF = "sst_comp/rae.sst_comp.lis">rae.sst_comp.lis</A> </TD>
<TD> <A HREF = "sst_comp/rae.sst_comp.cfl">rae.sst_comp.cfl</A> </TD>
<TD> Compressible SST </TD>
<TD> freestream </TD>
<TD> </TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "ke/rae.ke.dat">rae.ke.dat</A> </TD>
<TD> <A HREF = "ke/rae.ke.lis">rae.ke.lis</A> </TD>
<TD> <A HREF = "ke/rae.ke.cfl">rae.ke.cfl</A> </TD>
<TD> Chien k-epsilon </TD>
<TD> SST solution </TD>
<TD> CFL = 1.0</TD>
</TR>
<TR>
<TD scope="row"> <A HREF = "rumsey/rae.rumsey.dat">rae.rumsey.dat</A> </TD>
<TD> <A HREF = "rumsey/rae.rumsey.lis">rae.rumsey.lis</A> </TD>
<TD> <A HREF = "rumsey/rae.rum
评论0