SUMS04 Elements of Logic via Numbers and Sets, D. L. Johnson (1998).pdf


-
Springer Undergraduate Mathematics Series(SUMS)
D L. Johnson Elements of Logic via Numbers and sets Springer D, L Joh BSc MSc PhD Department of Mathematics, University of Nottingham, University Park, Nottingham NG7 2RD,UK Cover ilustration elemen 's reproduced by kind permission of Aptech Systems, Inc, Publishers of the GAUSS Mathematical and StatisticalSystem, 23E04 S.E. Kent-Kangley Road, Maple valley, WA98038, Usa.Tel:(206)432-7855Far(206)432-7832emaie:info@aptech.camUrl:www.aptechcom American Statistical Association: Chance Vol& No 1, 1995 article by KS and Kw Heiner Tree Rings of the Northern Shawangunks page 32 fg 2 Springer-Verlag: Mathematica in Education and Research Vcl4 Tasue 3 1995 articte by Roman E Maeder, Beatrice Amrhein and oliver Gloor llustrated Mathematics: Visualization of Mathematical Objects ' page 9 fig 11, originally published as a CD ROM Strated Mathematics'by TEL0 S ISBN0387-142243 ton by birkh BN3753-5100 Mathematica in EducaTon and Research vol 4 Issue 3 1995 article by Richard Gaylord and Kazcme Nishidate Traffic Engineering with Cellular Y Automata page 35 fg 2. Mathematica in Education and Research Vol 5 Issue 2 1996 article by Michael Trott The Implicitization of a Trefoil Mathcmatica in Education and Research Val 5 Issue 2 1996 article by Lee de Cola'Coins, Trees, Ears and Bes: Simulation of the Binomial Process page 19 fg 3. Mathematica in Education and Research Vol 5 Issue 2 1996 article by Richard Gaylord end Kazume Nishidate'contagious Spreading'page 3 fg 1. Mathematica n Fd cation and Research Vols Issue 2 1996 article by jue Buhler and Stan Wagcn'Sec page50鸱g ch Library Cataloguing in Publication Da Johnson, David lawrence abers and sets. -(Springer undergraduate mathematics series) 1. Number thed ITitle ISBN978-3-540-7612 ISBN978-1-447-0603-6( eBook) DOI10.1007978-1-4471-0603-6 Library of Congress Cataloging-in-Publication Data Johnson, DL Elements of logic via numbers and sets /D L. Johnson pcm-(Springer undergraduate mathematics series) Includes bibliographical references(p. 165)and index 1. Logic, Symbolic and mathematical I. Title II Series QA9J631998 97-28662 511.3~dc21 IP Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers Springer-Verlag Berlin Heidelberg 1998 Originally published by Springer-Verlag Herlin Heidelberg New York in 1998 2nd printing, with corrections 1998 Brd printing 2001 The use of registered names, trademarks etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made Typeset by Focal Image, London 12/3830-5432 Printed on acid-free paper SPIN 10831990 Fo Contents Introductio umbers 1.1 Arithmetic progressions 1.2 Proof by Contradiction 1.3 Proof by Contraposition 1.4 Proof by Inducti 1.5 Inductive Definition 19 6 The Well-ordering Principle 27 logic ■·曹■ 21 Propositions.…… 2.2 Truth Tables 2.3 Syllogisms 2.4 Quantifiers 48 3. Set 53 3.1 Introduction 54 3.2 Operations 58 3.3 Laws 62 3.4 The power Set 65 4. relations 71 4.1 Equivalence Relations 4.2 Congruences 4.3 Number Systems 79 4.4 Orde VIll Contents 5. Maps 5.1 Terminology and Notation ..89 5. 2 Examples..,. 94 5.3 Injections, Surjections and Bijections 99 5.4 Peano's axioms 6. Cardinal numbers 6.1 Cardinal arithmetic 114 6.2 The Cantor-Schroeder-Bernstein theorem ,,118 6.3 Countable sets ,,,,,,,,,,.121 6.4 Uncountable sets Solutions to exercises ∴....131 Guide to the literature 163 Bibliography ..165 D ramatis personae .,,. 167 Index .171 Introduction This book is based on a module given to first-year undergraduates at the uni versity of Nottingham with the aim of bridging the gap between school and university in mathematics. This is not so much a gap in the substance or na terial content of the subject but more a change in attitude and approach. In pure mathematics for example, rather than memorize a formula and be able to apply it, we want to understand that formula and be able to prove it. Physical intuition does not constitute a proof and neither does accumulated statistical evidence, what is required is a formal logical process. Since logic can sometimes appear rather a dry subject, we take as an underlying theme the concept of "number", which not only provides a rich source of illustrations but also helps to lay the foundations for many areas of more advanced mathematical study We begin in Chapter 1 with a survey of useful facts about numbers that are more or less familiar, such as the binomial theorem and Euclid s algorithm respectively, giving formal proofs of different kinds, notably proof by induction It will become increasingly evident that to gain a better understanding of what happens in the course of a proof we need a systematic language or framework within which to develop the ideas involved. Fortunately, one exists, and forms the subject of the next chapter The first half of Chapter 2 looks at propositional calculus, which treats propositions(statements that are either true of false) and the relations between them(such as implication) as mathematical objects. Ways of combining these and of operating on them, familiar from our knowledge of language, are put into formal shape governed by precise rules. The second half of Chapter 2 studies syllogisms, which are logical arguments, or processes of deduction, of the simplest kind. They thus form an ideal model or pattern for all forms of logical inference, and also serve to introduce the deceptively simple but crucially important idea, of quantification Introduction The core of the book is Chapter 3, where the development of set theory closely parallels that of logic in the previous chapter. It also lays the foundations for important results in the later chapters and introduces the terminology and notation that comprise the language of modern mathematics Two important types of relation are studied in Chapter 4: the notion of ordering forms a, familiar and fundamental element of structure in most number systems, and the seemingly artificial concept of equivalence relation. The latter finds application in many areas of advanced mathematics, especially in the construction of number systems and in abstract algebra, where the key result Theorem 4. 1 plays a decisive role The elementary concept of function is generalized to the more abstract idea. of map in Chapter 5, where many more or less familiar examples are given. A study of the basic properties of maps leads, among other things to our second key result of ubiquitous application, Theorem 5.6 The revolutionary ideas of Cantor described in Chapter 6 bring us ver. nearly into the present century. In addition to proving our third key result Theorem 6.6, we make good the claim that the concept of set is more funda- mental than that of number, and the axiomatic development of number systems reaches its crowning glory in the construction of the real numbers. The diligent reader will be rewarded with at least a glimpse of the meaning of the infinite It is a pleasure to acknowledge my gratitude to Springer-Verlag, and espe- cially to Susan Hezlet, for their courteous and efficient handling of all matters connected with the production of the book D. LJ Numbers 1+1=2. A.N. whitehead and B. Russell Principia Mathematica, Vol. Ii, p. 83 Historically, mathematics came into being to serve two purposes, counting and measuring. Both of these required the use of numbers, the positive integers N and the real numbers R, respectively. The need to solve equations such as 2x=3,m+4=0,x2+1=0 subsequently led to the appearance of more sophisticated number systems like the rational numbers @, the integers Z, and the complex numbers c. We are chiefly concerned here with properties of the positive integers and, at the same time, the means by which such properties are established This revolves around the concept of a mathematical proof, of which we give examples of four kinds finishing up with the most important for N, proof by induction 1.1 Arithmetic Progressions Definition 1.1 An arithmetic progression is a sequence of numbers C0,a1,2 whose consecutive terms differ by a constant called the common difference 01-a0=a2-a1 a,k D. L. Johnson, Elements of i ogic via Numbers and sets C Springer-Verlag Berlin Heidelberg 1998

6.44MB
SUMS04 Elements of Logic via Numbers and Sets, D. L. Johnson (1998).zip
2019-07-08SUMS04 Elements of Logic via Numbers and Sets, D. L. Johnson (1998).zip
5.12MB
SUMS20 Symmetries, D. L. Johnson (2001).pdf
2019-06-21Springer Undergraduate Mathematics Series(SUMS) SUMS20 Symmetries, D. L. Johnson (2001).pdf
1.46MB
SUMS06 Sets, Logic and Categories, Peter J. Cameron (1998) .zip
2019-07-08SUMS06 Sets, Logic and Categories, Peter J. Cameron (1998) .zip
5.7MB
SUMS20 Symmetries, D. L. Johnson (2001).zip
2019-07-10SUMS20 Symmetries, D. L. Johnson (2001).zip SUMS20 Symmetries, D. L. Johnson (2001).zip
4.40MB
Inequalities:theory of majorization and its applications
2013-03-05Inequalities: Theory of Majorization and Its Applications I Theory of Majorization 1 Introduction 3 A Motivation and Basic Definitions . . . . . . . . . . 3 B Majorization as a Partial Ordering . . . . . . . . . 18 C Order-Preserving Functions . . . . . . . . . . . . . 19 D Various Generalizations of Majorization . . . . . . . 21 2 Doubly Stochastic Matrices 29 A Doubly Stochastic Matrices and Permutation Matrices . . . . . . . . . . . . . . . . . . . . . . . . 29 B Characterization of Majorization Using Doubly StochasticMatrices . . . . . . . . . . . . . . . . . . 32 C Doubly Substochastic Matrices and Weak Majorization . . . . . . . . . . . . . . . . . . . . . . 36 D Doubly Superstochastic Matrices and Weak Majorization . . . . . . . . . . . . . . . . . . . . . . 42 E Orderings on D . . . . . . . . . . . . . . . . . . . . 45 F Proofs of Birkhoff’s Theorem and Refinements . . . 47 G Classes of Doubly Stochastic Matrices . . . . . . . . 52 xvii xviii Contents H More Examples of Doubly Stochastic and Doubly Substochastic Matrices . . . . . . . . . . . . . . . . 61 I Properties of Doubly Stochastic Matrices . . . . . . 67 J Diagonal Equivalence of Nonnegative Matrices . . . 76 3 Schur-Convex Functions 79 A Characterization of Schur-Convex Functions . . . . 80 B Compositions Involving Schur-Convex Functions . . 88 C Some General Classes of Schur-Convex Functions . 91 D Examples I. Sums of Convex Functions . . . . . . . 101 E Examples II. Products of Logarithmically Concave (Convex) Functions . . . . . . . . . . . . . 105 F Examples III. Elementary Symmetric Functions . . 114 G Muirhead’s Theorem . . . . . . . . . . . . . . . . . 120 H Schur-Convex Functions on D and Their Extension to Rn . . . . . . . . . . . . . . . . . . . 132 I Miscellaneous Specific Examples . . . . . . . . . . . 138 J Integral Transformations Preserving Schur-Convexity . . . . . . . . . . . . . . . . . . . . 145 K Physical Interpretations of Inequalities . . . . . . . 153 4 Equivalent Conditions for Majorization 155 A Characterization by Linear Transformations . . . . 155 B Characterization in Terms of Order-Preserving Functions . . . . . . . . . . . . . . . . . . . . . . . . 156 C A Geometric Characterization . . . . . . . . . . . . 162 D A Characterization Involving Top Wage Earners . . 163 5 Preservation and Generation of Majorization 165 A Operations Preserving Majorization . . . . . . . . . 165 B Generation of Majorization . . . . . . . . . . . . . . 185 C Maximal and Minimal Vectors Under Constraints . 192 D Majorization in Integers . . . . . . . . . . . . . . . 194 E Partitions . . . . . . . . . . . . . . . . . . . . . . . 199 F Linear Transformations That Preserve Majorization 202 6 Rearrangements and Majorization 203 A Majorizations from Additions of Vectors . . . . . . 204 B Majorizations from Functions of Vectors . . . . . . 210 C Weak Majorizations from Rearrangements . . . . . 213 D L-Superadditive Functions—Properties and Examples . . . . . . . . . . . . . . . . . . . . . 217 Contents xix E Inequalities Without Majorization . . . . . . . . . . 225 F A Relative Arrangement Partial Order . . . . . . . 228 II Mathematical Applications 7 Combinatorial Analysis 243 A Some Preliminaries on Graphs, Incidence Matrices, and Networks . . . . . . . . . . . . . . . . 243 B Conjugate Sequences . . . . . . . . . . . . . . . . . 245 C The Theorem of Gale and Ryser . . . . . . . . . . . 249 D Some Applications of the Gale–Ryser Theorem . . . 254 E s-Graphs and a Generalization of the Gale–Ryser Theorem . . . . . . . . . . . . . . . . . 258 F Tournaments . . . . . . . . . . . . . . . . . . . . . . 260 G Edge Coloring in Graphs . . . . . . . . . . . . . . . 265 H Some Graph Theory Settings in Which Majorization Plays a Role . . . . . . . . . . . . . . 267 8 Geometric Inequalities 269 A Inequalities for the Angles of a Triangle . . . . . . . 271 B Inequalities for the Sides of a Triangle . . . . . . . 276 C Inequalities for the Exradii and Altitudes . . . . . . 282 D Inequalities for the Sides, Exradii, and Medians . . 284 E Isoperimetric-Type Inequalities for Plane Figures . 287 F Duality Between Triangle Inequalities and Inequalities Involving Positive Numbers . . . . . . . 294 G Inequalities for Polygons and Simplexes . . . . . . . 295 9 MatrixTheory 297 A Notation and Preliminaries . . . . . . . . . . . . . . 298 B Diagonal Elements and Eigenvalues of a Hermitian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 C Eigenvalues of a Hermitian Matrix and Its Principal Submatrices . . . . . . . . . . . . . . . . . 308 D Diagonal Elements and Singular Values . . . . . . . 313 E Absolute Value of Eigenvalues and Singular Values 317 F Eigenvalues and Singular Values . . . . . . . . . . . 324 G Eigenvalues and Singular Values of A, B, and A + B . . . . . . . . . . . . . . . . . . . . . . . 329 H Eigenvalues and Singular Values of A, B, and AB . 338 I Absolute Values of Eigenvalues and Row Sums . . . 347
3.69MB
SUMS01 Groups, Rings and Fields, D. A. R. Wallace (1998) .pdf
2019-06-20Springer Undergraduate Mathematics Series(SUMS)
6.15MB
Table of Integrals Series and Products_7th
2017-11-29Introduction 1 0.1 Finite Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.11 Progressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.12 Sums of powers of natural numbers . . . . . . . . . . . . . . . . . . . . . . . . 1 0.13 Sums of reciprocals of natural numbers . . . . . . . . . . . . . . . . . . . . . . 3 0.14 Sums of products of reciprocals of natural numbers . . . . . . . . . . . . . . . 3 0.15 Sums of the binomial coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.2 Numerical Series and Infinite Products . . . . . . . . . . . . . . . . . . . . . . 6 0.21 The convergence of numerical series . . . . . . . . . . . . . . . . . . . . . . . 6 0.22 Convergence tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0.23–0.24 Examples of numerical series . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 0.25 Infinite products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 0.26 Examples of infinite products . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 0.3 Functional Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 0.30 Definitions and theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.46MB
SUMS06 Sets, Logic and Categories, Peter J. Cameron (1998) .djvu
2019-06-20Springer Undergraduate Mathematics Series(SUMS)
9.59MB
SUMS24 Elements of Abstract Analysis, Mícheál Ó Searcóid (2002) .pdf
2019-06-22SUMS24 Elements of Abstract Analysis, Mícheál Ó Searcóid (2002) .pdf
19.99MB
[离散数学及其应用(英文第六版)].Discrete.Mathematics.and.its.Applications.djvu
2012-07-18经典教材 Contents Preface vii The MathZone Companion Website xviii To the Student xx 1 The Foundations: Logic and Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Propositional Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Propositional Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.3 Predicates and Quantifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1. 4 Nested Quantifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.5 Rules of Inference ............................................................. 63 1.6 Introduction to Proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 1.7 Proof Methods and Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 End-of-Chapter Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 2 2.1 2.2 2.3 2.4 Basic Structures: Sets, Functions, Sequences, and Sums. . . . . . . . . . . 111 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 , Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Sequences and Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 3 The Fundamentals: Algorithms, the Integers, and Matrices....... .167 3 .1 Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 3.2 The Growth of Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 3.3 Complexity of Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 3.4 The Integers and Division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 3.5 Primes and Greatest Common Divisors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 3.6 Integers and Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 3.7 Applications of Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 3.8 Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 4 Induction and Recursion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 4.1 Mathematical Induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 4.2 Strong Induction and Well-Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 4.3 Recursive Definitions and Structural Induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 4.4 Recursive Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Iii 4.5 Program Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 5 Counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 5.1 The Basics of Counting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 5.2 The Pigeonhole Principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 5.3 Permutations and Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 5.4 Binomial Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 5.5 Generalized Permutations and Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 5.6 Generating Permutations and Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 6 Discrete Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 6.1 An Introduction to Discrete Probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 6.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 6.3 Bayes' Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7 6.4 Expected Value and Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 7 Advanced Counting Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .449 7.1 Recurrence Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 7.2 Solving Linear Recurrence Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 7.3 Divide-and-Conquer Algorithms and Recurrence Relations. . . . . . . . . . . . . . . . . . . . . . . 474 7.4 Generating Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 7.5 Inclusion-Exclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 7.6 Applications of Inclusion-Exclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 8 Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 8.1 Relations and Their Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 8.2 n-ary Relations and Their Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 8.3 Representing Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 8.4 Closures of Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 8.5 Equivalence Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 8.6 Partial Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581 9 G ra p hs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 9.1 Graphs and Graph Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589 9.2 Graph Terminology and Special Types of Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597 9.3 Representing Graphs and Graph Isomorphism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 9.4 Connectivity................................................................. 621 9.5 Euler and Hamilton Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 9.6 Shortest-Path Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .647 9.7 Planar Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 9.8 Graph Coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 JL() Jr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f)fJ 10.1 Introduction to Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .683 10.2 Applications of Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 10.3 Tree Traversal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 10.4 Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724 10.5 Minimum Spanning Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743 JL JL Boo I an Al g b Jr a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 11.1 Boolean Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .749 11.2 Representing Boolean Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 11.3 Logic Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 11.4 Minimization of Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781 JL2 Modling Computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7fJ5 12.1 Languages and Grammars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 12.2 Finite-State Machines with Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796 12.3 Finite-State Machines with No Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804 12.4 Language Recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7 12.5 Turing Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 End-of-Chapter Material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838 A ppndix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A - JL A-I Axioms for the Real Numbers and the Positive Integers. . . . . . . . . . . . . . . . . . . . . . . . . . A-I A-2 Exponential and Logarithmic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 A - 3 Pseudocode............................................................... . A-I 0
9.42MB
SUMS24 Elements of Abstract Analysis, Mícheál Ó Searcóid (2002) .zip
2019-07-10SUMS24 Elements of Abstract Analysis, Mícheál Ó Searcóid (2002) .zip
3.58MB
SUMS01 Groups, Rings and Fields, D. A. R. Wallace (1998) .zip
2019-07-08SUMS01 Groups, Rings and Fields, D. A. R. Wallace (1998) .zip
2.31MB
Matlab - Math Problems solving with Matlab Programming.pdf
2009-06-111 Engineering Problem Solving 1 1.1 Problem-Solving Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 ProblemSolving Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Computing Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Computing Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Matlab Technical Computing Environment 14 2.1 Workspace,Windows, and Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 ScalarMathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 BasicMathematical Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Computational Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Display Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Accuracyand Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Files and File Management 37 3.1 FileManagement Definitions and Commands . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Saving and RestoringMatlab Information . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 ScriptM-Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Errors and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Matlab Search Path, PathManagement, and Startup . . . . . . . . . . . . . . . . . . 49 i 4 Trigonometry and ComplexNum bers 51 4.1 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Two-Dimensional Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Arrays and Array Operations 81 5.1 Vector Array s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Matrix Array s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 ArrayPlotting Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6 Mathematical Functions and Applications 101 6.1 Signal Representation, Processing, and Plotting . . . . . . . . . . . . . . . . . . . . . 101 6.2 Poly nomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3 Partial Fraction Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.4 Functions of Two Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.5 User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6 Plotting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 DataAnalysis 135 7.1 Maximum andMinimum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Sums and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.3 Statistical Analy sis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7.4 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8 Selection Programming 155 8.1 Relational and Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.3 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 8.4 Selection Statements in User-Defined Functions . . . . . . . . . . . . . . . . . . . . . 169 8.5 Update Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 ii 8.6 Applied ProblemSolving: Speech Signal Analy sis . . . . . . . . . . . . . . . . . . . . 175 9 Vectors, Matrices and Linear Algebra 180 9.1 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 9.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9.3 Solutions to Sy stems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . 196 9.4 Applied ProblemSolving: RobotMotion . . . . . . . . . . . . . . . . . . . . . . . . . 202 10 Curve Fitting and Interpolation 207 10.1 MinimumMean-Square Error Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . 207 10.2 Applied Problem Solving: Hydraulic Engineering . . . . . . . . . . . . . . . . . . . . 213 10.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 Applied ProblemSolving: Human Hearing . . . . . . . . . . . . . . . . . . . . . . . . 219 11 Integration and Differentiation 223 11.1 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 11.2 Numerical Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 12 Strings, Time, Base Conversion and Bit Operations 239 12.1 Character Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 12.2 Time Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 12.3 Base Conversions and Bit Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 13 Symbolic Processing 250 13.1 Sy mbolic Expressions and Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 13.2 Manipulating Trigonometric Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 257 13.3 Evaluating and Plotting Sy mbolic Expressions . . . . . . . . . . . . . . . . . . . . . 258 13.4 Solving Algebraic and Transcendental Equations . . . . . . . . . . . . . . . . . . . . 259 13.5 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 13.6 Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
1.5MB
Competitive Programmer's Handbook Antti Laaksonen
2019-01-12演算法的handbookPreface ix I Basic techniques 1 1 Introduction 3 1.1 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Input and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Working with numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.17MB
SUMS79 From Natural Numbers to Quaternions.zip
2019-07-29SUMS79 From Natural Numbers to Quaternions, Dr. Jürg Kramer, Anna-Maria von Pippich(2017).zip
6.53MB
SUMS05 Vector Calculus, Paul C. Matthews (1998) .pdf
2019-06-20Springer Undergraduate Mathematics Series(SUMS)
19.99MB
离散数学及其应用 .Discrete.Mathematics.and.its.Applications
2010-05-27简介 《离散数学及其应用》(Discrete Mathematics and Its Applications)是经典的离散数学教材,为全球500多所大学广为采用作为指定教材。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构和算法设计。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明,各种练习和题目,以及丰富的历史资料和网站资源。本书适用于数学、计算机科学、计算机工程等专业的学生。目前本书最新版为第六版。 作者介绍 Kenneth H. Rosen 1972年获密歇根大学数学学士学位,1976年获麻省理工学院数学博士学位,1982年加入贝尔实验室,现为AT&T实验室特别成员,国际知名的计算机数学专家,除本书外,还著有《初等数论及其应用》等书。 【djvu版本文件较小,清晰度较高,黑白的】 目录: 1.The Foundations: Logic and Proofs 2.Basic Structures: Sets,Functions,Sequences,and Sums 3.The Fundamentals: Algorithms,the Integers,and Matrices 4.Induction and Recursion 5.Counting 6.Discrete Probability 7.Advanced Counting Techniques 8.Relations 9.Graphs 10.Trees 11.Boolean Algebra 12.Modeling Computation Appendixes 第五版目录 出版者的话 专家指导委员会 作者介绍 前言 第1章 基础:逻辑和证明、集合、函数 第2章 基础:算法、整数和矩阵 第3章 数学推理、归纳与递归 第4章 计数 第5章 离散概率 第6章 高级计数技术 第7章 关系 第8章 图 第9章 树 第10章 布尔代数 第11章 计算模型 附录A 指数函数和对数函数 附录B 伪代码 奇数练习题答案 推荐读物 参考文献
3.99MB
Advances in Real and Complex Analysis with Applications
2018-07-23Contents Certain Image Formulae and Fractional Kinetic Equations Involving Extended Hypergeometric Functions . . . . . . . . . . . . . . . . . . . . . 1 Krunal B. Kachhia, Praveen Agarwal and Jyotindra C. Prajapati The Compact Approximation Property for Weighted Spaces of Holomorphic Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Manjul Gupta and Deepika Baweja Bloch Mappings on Bounded Symmetric Domains . . . . . . . . . . . . . . . . . . 49 Tatsuhiro Honda Certain Class of Meromorphically Multivalent Functions Defined by a Differential Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Ghazi S. Khammash and Praveen Agarwal Bivariate Symmetric Discrete Orthogonal Polynomials . . . . . . . . . . . . . . 87 Y. Guemo Tefo, Iván Area and M. Foupouagnigni New and Extended Applications of the Natural and Sumudu Transforms: Fractional Diffusion and Stokes Fluid Flow Realms . . . . . . 107 Fethi Bin Muhammed Belgacem, Rathinavel Silambarasan, Hammouch Zakia and Toufik Mekkaoui On Uncertain-Fractional Modeling: The Future Way of Modeling Real-World Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Abdon Atangana and Ilknur Koca Quadratic Reciprocity and Some “Non-differentiable” Functions . . . . . . 145 Kalyan Chakraborty and Azizul Hoque Survey on Metric Fixed Point Theory and Applications . . . . . . . . . . . . . 183 Yeol Je Cho Sums of Finite Products of Euler Functions . . . . . . . . . . . . . . . . . . . . . . 243 Taekyun Kim, Dae San Kim, Gwan Woo Jang and Jongkyum Kwon v On a New Extension of Caputo Fractional Derivative Operator . . . . . . 261 İ.O. Kıymaz, P. Agarwal, S. Jain and A. Çetinkaya An Extension of the Shannon Wavelets for Numerical Solution of Integro-Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Maryam Attary Inverse Source Problem for Multi-term Fractional Mixed Type Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 E.T. Karimov, S. Kerbal and N. Al-Salti
3.18MB
SUMS77 Topology, Calculus and Approximation.zip
2019-07-29SUMS77 Topology, Calculus and Approximation, Vilmos Komornik (2017).zip
-
下载
计算机网络-第三章.docx
计算机网络-第三章.docx
-
下载
基于python开发的工商数据查询软件v7.1下载
基于python开发的工商数据查询软件v7.1下载
-
下载
strpl实现,不支持中文
strpl实现,不支持中文
-
下载
经济学通论习题集.pdf
经济学通论习题集.pdf
-
下载
解决fatal error C1010 unexpected end of file while looking for precompiled header
解决fatal error C1010 unexpected end of file while looking for precompiled header
-
下载
橡胶沥青维他连接剂原理介绍及使用方法..pdf
橡胶沥青维他连接剂原理介绍及使用方法..pdf
-
下载
shot_localvideo.mp4
shot_localvideo.mp4
-
下载
Java连接PostgreSQL数据库代码实例
Java连接PostgreSQL数据库代码实例
-
下载
ECharts配置项.md
ECharts配置项.md
-
下载
uart_module.tar
uart_module.tar
