参数优化的元遗传算法:此存储库中的应用程序仅用于标记多样性映射器。 但是,需要更改几行以合并其他遗传算法-源码


-
参数优化的元遗传算法:此存储库中的应用程序仅用于标记多样性映射器。 但是,需要更改几行以合并其他遗传算法
249KB
遗传算法优化BP神经网络权值和阈值
2018-12-14本资源包含遗传算法的基本用法源代码以及遗传算法来优化BP神经网络的初始权值和阈值的源代码, 外加程序正常运行依赖的函数包都在里面, 程序运行正常, 可以加深对遗传算法的理解
325KB
遗传算法与BP神经网络
2014-06-13本文研究用遗传算法优化BP神经网络,既可以用遗传算法优化神经网络的连接权值,又可以优化神经网络的拓扑结构,还可以用遗传算法同时优化BP神经网络的权值、阈值和网路拓扑结构。传统BP神经网络的权值通过梯度下降来求最佳值,易陷入局部最优。而BP神经网络的拓扑结构,从原理上,只要有足够多的隐层和隐节点,即可实现复杂的映射关系,但是如何根据特定的问题来具体确定网络的结构尚无很好的方法,仍需要凭借经验和试凑。由于遗传算法具有优化对象模型无关性、鲁棒性强、随机性、全局性以及适用并行处理等优点,能够快速优化网络结构和网络连接权值。
112KB
基于VC++6.0的遗传算法解TSP问题对话框应用程序
2012-03-26基于VC++6.0的遗传算法解TSP问题对话框应用程序,拥有直接绘制城市路径图功能,遗传算法效率高。适应函数采用了基于排序的指数型评价函数,收敛性更快,自然选择效果更优;提供两种交叉算法,默认使用贪婪交叉算法,优化了TSP问题的收敛性,另一种为常规交叉算法,随机区间保留算法;变异算法默认使用随机区间随机排序邻域映射算法,另一种为基于2-opt的邻域映射算法,前者的全局最优搜索能力更强。
907KB
论文研究-基于均匀自组织映射遗传算法的梯级水库优化调度.pdf
2019-09-20论文研究-基于均匀自组织映射遗传算法的梯级水库优化调度.pdf, 针对遗传算法中初始解分布不均以及易早熟等问题,采用均匀设计方法来生成均匀分布的初始解以及自组织映射算法通过高低维空间映射来改变个体基因从而增强局部搜索能力,提出了均匀自组织映射遗传算法,弥补了传统遗传算法中初始解的生成过于随机以及进化过程中易陷入局部解的不足,并将此改进算法在梯级水库的长期优化调度中进行了应用. 通过实例计算表明,与遗传算法以及标准粒子群算法相比,此方法拥有更好的全局寻优能力,与动态规划算法结果相近,并且有着较快的计算速度,从而验证了此方法用于处理梯级水库的长期优化调度问题的可行性与合理性.
910KB
遗传算法思想+ppt
2009-12-04遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
273KB
遗传算法优化神经网络拓扑结构和权值
2008-02-22采用改进的串行遗传算法以各种变尺度搜索解空间,可以改变神经元输入和输出的映射关系,进而改变整个网络的性能,在高维解空间中自动寻找合适的解,并且验证了Simplex的有效性.
1KB
【matlab】基于BP算法和遗传算法的自适应噪声抵消器
2012-12-30一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。 从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。 计算机论文www.lunwendingzhi.com; 机械毕业论文www.lunwenwanjia.com 在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。 作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。 管理毕业论文网www.yifanglunwen.com; 音乐毕业论文www.xyclww.com; 英语毕业论文www.lanrenbanjia.com; 学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;并行搜索,搜索效率高;搜索遍及整个搜索空间,容易得到全局最优解。所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。 <WP=66>BP-GA混合算法的方法出发点为: 经济论文www.youzhiessay.com 教育论文www.hudonglunwen.com; 医学论文网www.kuailelunwen.com; (1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;(2)用遗传算法作实现优化搜索;(3)遗传算法中适应度的计算采用神经网络计算来实现。BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;(2)设定适当的训练样本集,计算训练样本集;(3)训练神经网络;(4)采用遗传算法进行结构寻优;(5)利用训练好的神经网络检验遗传算法优化结果。若满足要求,计算结束;若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。 通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小, 会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;种群较大时,又会增加计算量,使遗传算法的运行效率降低。一般取种群数目为20~100;交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。 由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯<WP=67>的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪比针对傅立叶信号提高了16db左右,针对余弦信号提高了23db左右。三、结论用短时傅立叶信号和余弦信号进行噪声对消性能测试,通过分别使用单一的BP算法和混合算法作比较发现遗传算法具有很强的处理能力和优化能力,用它优化BP神经网络的权值,与原有单一的BP算法相比,可以节省大量的学习和计算时间,而且提高了信噪比。
1.80MB
遗传算法有关论文,可以用于模型预测和模拟功能
2009-09-21这是遗传算法的一些相关知识遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。 遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
699KB
论文研究-求解0-1整数规划问题的混沌遗传算法.pdf
2019-07-22针对一类特殊的0-1整数规划求解问题提出一种混沌遗传算法。该算法采用幂函数载波技术提高混沌搜索的充分性与遍历性,以混沌搜索算法得出的优化个体作为遗传算法的新群体进行交叉、变异等操作,提高种群质量,同时增加种群多样性,改善遗传算法的早熟问题。该算法被用于解决片上网络映射A3MAP(architecture-aware analytic mapping) 0-1整数规划问题。实验仿真证明,该算法的收敛速度和解的精度均优于A3MAP-GA。
86B
粒子群优化算法源码下载
2012-12-30求解最优化问题一直是遗传算法的经典应用领域,但是对于不同的最优化问题,遗传算法往往要重新设计“交叉”、“变异”算子,甚至要开发新的进化操作;另外遗传算法不容易理解、操作复杂、大多数情况下效率比较低。所以,寻求新的解决最优问题的算法一直是研究热点。对约束优化问题的求解,已有许多算法被提出。传统的方法有梯度映射法、梯度下降法、惩罚函数法、障碍函数法等,但是单纯使用这些方法不是效率很低就是适用范围有限。而进化计算由于其求解过程不依赖于目标函数的解析性质,同时又能以较大的概率收敛于全局最优解,所以用进化算法求解约束优化问题已是一个很有意义的研究方向。用进化计算求解约束优化问题时,最基本的思想就是:首先设法把个体带入可行域,然后再在可行域内找到尽可能好的解。求解约束优化问题最困难的主要是对约束条件的处理。目前,使用最广泛的对约束条件的处理方法是惩罚函数法。基于惩罚函数的进化算法一般来说都包含有许多惩罚系数,在实际应用时,只有正确设置这些系数才可能获得可行解,而要获得适当的惩罚系数则需要大量的实验为基础。在科学实践、工程系统设计及社会生产和经济发展中还有一类很常见到优化问题:多目标优化问题,因此研究多目标优化问题具有十分重要的意义。由于多目标优化问题不存在唯一的全局最优解,所以求解多目标优化问题实际上就是要寻找一个解的集合。传统的多目标优化方法是将多目标问题通过加权求和转化为单目标问题来处理的。但是,这种方法要求对问题本身有很强的先验认识,难以处理真正的多目标问题。进化计算由于其是一种基于种群操作的计算技术,可以隐并行的搜索解空间中的多个解,并能利用不同解之间的相似性来提高其并发求解的效率,因此进化计算比较合求解多目标优化问题。 粒子群优化(Particle Swarm Optimization, PSO)经济论文www.youzhiessay.com。 算法是由Kennedy和Eberhart于1995年提出的一种优化算法。它是对生物群体的社会行为进<WP=68>行的一种模拟,它最早源于对鸟群觅食行为的研究。在生物群体中存在着个体与个体、个体与群体间的相互作用、相互影响的行为,这种行为体现的是一种存在于生物群体中的信息共享的机制。PSO算法就是对这种社会行为的模拟,即利用信息共享机制,使得个体间可以相互借鉴经验,从而促进整个群体的发展。 PSO算法和遗传算法(Genetic Algorithm,GA)类似,也是一种基于迭代的优化工具,系统初始化为一组随机解,通过某种方式迭代寻找最优解。但PSO没有GA的“选择”、“交叉”、“变异”算子,编码方式也比GA简单。并且很多情况下要比遗传算法更有效率,所以基于粒子群算法处理优化问题中的是一个很有意义的研究方向。由于PSO算法容易理解、易于实现,所以PSO算法发展很快。在函数优化、系统控制、神经网络训练等领域得到广泛应用。 因此,本文在PSO算法基础上对PSO算法处理优化问题的能力及基于PSO算法,毕业论文网www.594wm.com,求解约束优化问题和多目标优化问题进行了深入研究。主要体现在以下几个方面:第一、介绍了有关粒子群优化算法的背景知识,阐述了算法产生的基础。 接着讨论了粒子群优化算法的发展和基本原理,并给出了算法的流程。通过对算法公式和参数设置进行的综合分析以及和其它优化算法进行比较,给出了粒子群优化算法实际使用时的指导原则。并讨论了算法在一些领域中的成功应用。第二、就粒子群优化算法在求解最优化问题中的应用,对无约束和有约束最优化问题分别设计了基于粒子群优化算法的不同的求解方法。对于无约束优化问题,本文直接用目标函数作为适应度函数,采用实数编码。对于约束优化问题,本文采用一种惩罚函数作为粒子群优化算法的适应度函数。 对两种问题分别应用了不同的测试函数对其进行了测试,结果表明了粒子群优化算法求解最优化问题的可行性。第三、针对约束优化问题本文在引入了半可行域的概念的基础上提出了竞争选择的新规则,并改进了基于竞争选择和惩罚函数的进化算法的适应度函数。并且本文规定了半可行解性质:半可行解优于不可行解,但劣于可行解。在半可行域内个体可直接用目标函数来评价。第四、结合粒子群优化算法本身的特点,本文设计了选择算子对半可<WP=69>行域进行操作,从而提出了利用PSO算法求解约束优化问题的新的进化算法。 第五、由于多目标优化问题和单目标优化问题是有本质的区别的:前者一般是一组或几组连续解的集合,而后者只是单个解或一组连续的解,所以PSO算法不能直接应用于多目标优化问题。因此本文对PSO全局极值和个体极值选取方式做了改进,提出了最优解评估选取的PSO算法,用于对多目标优化问题的非劣最优解集的搜索。实验结果证明了算法的有效性。粒子群算法的收敛性、基于粒子群算法求解不连续、多可行域的约束优化问题、基于粒子群算法求解高维多目标优化问题是本文的后续研究工作。
285KB
论文研究-一种三角网格的球面参数化算法和应用.pdf
2019-07-22三维网格的参数化是数字几何处理中一个基本问题,在纹理映射、重新网格化和几何变形等许多图形处理中都有着非常重要的应用。在现有参数化方法的基础上,根据球面与平面参数化之间的差异,列出了一个关于角度的有效球面三角化的充要条件,使用LM算法通过对非线性优化问题的求解,得到具有期望目标的球面参数化结果。并介绍算法的应用,给出实例说明了算法有效性。
2.47MB
遗传算法原理及其工程应用
2010-01-18模拟自然界优胜劣汰的进化现象,把搜索空间映射为遗传空间,把可能的解编码成一个向量——染色体,向量的每个元素称为基因。 通过不断计算各染色体的适应值,选择最好的染色体,获得最优解。
535KB
论文研究-基于云自适应遗传算法的NoC映射研究.pdf
2019-09-08NoC映射是NoC设计中的重要步骤,映射结果的优劣对NoC的QoS约束和通信功耗有着很大的影响。提出一种采用云自适应遗传算法实现NoC映射的方案,该算法利用云模型对传统遗传算法加以改进,以此新方法自动调整遗传算法过程中的交叉概率和变异概率,从而达到优化遗传算法的目的。结合NoC映射中的具体问题,在功耗和延时约束的限制条件下,建立了延时约束下的NoC映射功耗数学模型。实验表明,该方法在NoC映射中取得了良好的效果,降低了通信功耗。
7.14MB
演化程序——遗传算法和数据编码的结合
2009-05-01遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优
967KB
改进鲸群优化算法及其应用
2020-05-13针对传统WOA算法在迭代寻优前期因种群存在适应度相对较差个体并通过代间信息继承途径而影响新种群优良性与算法寻优性能的问题,提出一种将WOA算法与混沌搜索策略相融合的改进鲸群优化算法(MWOA).该算法在每代寻优过程中以个体适应度值的优劣作为判定准则以识别当前种群的最差个体,通过混沌映射对该最差个体进行位置更新以改善种群的优良性并提高算法的优化性能与寻优效率.实验结果表明,改进算法在基准测试函数实验表现出较强的探索寻优性能、在最小二乘支持向量机的参数优化实验中验证了其较高的寻优效率等.
272KB
双线性映射的概念及应用
2018-06-14粗浅的介绍了双线性映射的概念以及在现实生活中的应用
1005KB
论文研究-基于改进遗传算法的片上网络低功耗映射方法.pdf
2019-07-22针对规模庞大的应用如何在NoC平台上低功耗地运行,提出了一种基于改进遗传算法的片上网络低功耗映射方法。该方法利用任务节点的通信权重和映射平台的结构特征,对任务节点进行优先级划分并根据任务节点优先级及其连接关系获取较优初始映射解集。在此基础上,在遗传操作中加入轮盘转赌、最优邻居选择、进化逆转等操作,同时每次迭代中都以一定的概率选择初始解,防止算法停滞。实验结果表明,在相同任务模型和映射平台下,改进遗传算法对比于传统遗传算法和随机映射方法,都大幅度降低了功耗。
764KB
遗传算法基础.ppt
2011-10-15编码:从问题域到遗传域的映射。即性状与基因的DNA序列的映射 解码:从遗传域到问题域的映射。即将DNA序列解释成个体的性状 适应度:种群的某个个体对生存环境的适应程度。适应度高的个体可以获得更多的繁殖机会,而适应度低的个体,其繁殖机会就会比较少,甚至逐渐灭绝 选择:以一定概率从种群中选择若干个体的操作。一般而言,选择就是基于适应度的优胜劣汰的过程 交叉:有性生殖生物在繁殖下一时两个同源染色体之间通过交叉而重组,即在两个染色体的相同位置处DNA被切断,前后两串分别交叉组合形成新的染色体
-
下载
广东省珠海市第二中学2020-2021学年高二3月月考政治试卷 Word版含答案.docx
广东省珠海市第二中学2020-2021学年高二3月月考政治试卷 Word版含答案.docx
-
下载
RawViewer.zip
RawViewer.zip
-
下载
江西省莲花中学2020-2021学年高二下学期第一次周考化学试卷 Word版含答案.doc
江西省莲花中学2020-2021学年高二下学期第一次周考化学试卷 Word版含答案.doc
-
下载
visualcppbuildtools_full.zip
visualcppbuildtools_full.zip
-
下载
Java面试突击-V3.0.pdf
Java面试突击-V3.0.pdf
-
下载
宁夏中卫市2021届高三下学期第二次模拟考试政治试题 Word版含答案.docx
宁夏中卫市2021届高三下学期第二次模拟考试政治试题 Word版含答案.docx
-
下载
福建省南安市侨光中学2020-2021学年高一下学期第一次阶段考试化学试题 Word版含答案.docx
福建省南安市侨光中学2020-2021学年高一下学期第一次阶段考试化学试题 Word版含答案.docx
-
下载
广东省珠海市第二中学2020-2021学年高二3月月考数学试卷 Word版含答案.docx
广东省珠海市第二中学2020-2021学年高二3月月考数学试卷 Word版含答案.docx
-
下载
上海市闵行区2021届高三下学期4月质量监控考试(二模)语文试题 Word版含答案.doc
上海市闵行区2021届高三下学期4月质量监控考试(二模)语文试题 Word版含答案.doc
-
下载
广东省信宜市第二中学2020-2021学年高一下学期期中热身生物试题 Word版含答案.doc
广东省信宜市第二中学2020-2021学年高一下学期期中热身生物试题 Word版含答案.doc
