fashion_mnist数据集


-
一个关于深度学习的衣服样式数据集与mnist数据集相类似
58.90MB
FashionMNIST数据集
2018-12-22Fashion-MNIST是一个替代MNIST手写数字集的图像数据集。 它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。Fashi
34.63MB
fashion-mnist数据集
2018-03-31fashion-mnist深度学习数据集用来做练手最佳,而且是Kaggle上最近mnist系列的数据集,数据集的图像大小和类别与mnist数据一样,非常适合拿来做扩展运用。
fashion_mnist识别准确率问题_course
2019-11-05fashion_mnist识别准确率一般为多少呢?我看好多人都是92%左右,但是我用一个网络达到了94%,想问问做过的小伙伴到底是多少? ``` #这是我的结果示意 x_shape: (60000, 28, 28) y_shape: (60000,) epoches: 0 val_acc: 0.4991 train_acc 0.50481665 epoches: 1 val_acc: 0.6765 train_acc 0.66735 epoches: 2 val_acc: 0.755 train_acc 0.7474 epoches: 3 val_acc: 0.7846 train_acc 0.77915 epoches: 4 val_acc: 0.798 train_acc 0.7936 epoches: 5 val_acc: 0.8082 train_acc 0.80365 epoches: 6 val_acc: 0.8146 train_acc 0.8107 epoches: 7 val_acc: 0.8872 train_acc 0.8872333 epoches: 8 val_acc: 0.896 train_acc 0.89348334 epoches: 9 val_acc: 0.9007 train_acc 0.8986 epoches: 10 val_acc: 0.9055 train_acc 0.90243334 epoches: 11 val_acc: 0.909 train_acc 0.9058833 epoches: 12 val_acc: 0.9112 train_acc 0.90868336 epoches: 13 val_acc: 0.9126 train_acc 0.91108334 epoches: 14 val_acc: 0.9151 train_acc 0.9139 epoches: 15 val_acc: 0.9172 train_acc 0.91595 epoches: 16 val_acc: 0.9191 train_acc 0.91798335 epoches: 17 val_acc: 0.9204 train_acc 0.91975 epoches: 18 val_acc: 0.9217 train_acc 0.9220333 epoches: 19 val_acc: 0.9252 train_acc 0.9234667 epoches: 20 val_acc: 0.9259 train_acc 0.92515 epoches: 21 val_acc: 0.9281 train_acc 0.9266667 epoches: 22 val_acc: 0.9289 train_acc 0.92826664 epoches: 23 val_acc: 0.9301 train_acc 0.93005 epoches: 24 val_acc: 0.9315 train_acc 0.93126667 epoches: 25 val_acc: 0.9322 train_acc 0.9328 epoches: 26 val_acc: 0.9331 train_acc 0.9339667 epoches: 27 val_acc: 0.9342 train_acc 0.93523335 epoches: 28 val_acc: 0.9353 train_acc 0.93665 epoches: 29 val_acc: 0.9365 train_acc 0.9379333 epoches: 30 val_acc: 0.9369 train_acc 0.93885 epoches: 31 val_acc: 0.9387 train_acc 0.9399 epoches: 32 val_acc: 0.9395 train_acc 0.9409 epoches: 33 val_acc: 0.94 train_acc 0.9417667 epoches: 34 val_acc: 0.9403 train_acc 0.94271666 epoches: 35 val_acc: 0.9409 train_acc 0.9435167 epoches: 36 val_acc: 0.9418 train_acc 0.94443333 epoches: 37 val_acc: 0.942 train_acc 0.94515 epoches: 38 val_acc: 0.9432 train_acc 0.9460667 epoches: 39 val_acc: 0.9443 train_acc 0.9468833 epoches: 40 val_acc: 0.9445 train_acc 0.94741666 epoches: 41 val_acc: 0.9462 train_acc 0.9482 epoches: 42 val_acc: 0.947 train_acc 0.94893336 epoches: 43 val_acc: 0.9472 train_acc 0.94946665 epoches: 44 val_acc: 0.948 train_acc 0.95028335 epoches: 45 val_acc: 0.9486 train_acc 0.95095 epoches: 46 val_acc: 0.9488 train_acc 0.9515833 epoches: 47 val_acc: 0.9492 train_acc 0.95213336 epoches: 48 val_acc: 0.9495 train_acc 0.9529833 epoches: 49 val_acc: 0.9498 train_acc 0.9537 val_acc: 0.9498 ``` ``` import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt def to_onehot(y,num): lables = np.zeros([num,len(y)]) for i in range(len(y)): lables[y[i],i] = 1 return lables.T # 预处理数据 mnist = keras.datasets.fashion_mnist (train_images,train_lables),(test_images,test_lables) = mnist.load_data() print('x_shape:',train_images.shape) #(60000) print('y_shape:',train_lables.shape) X_train = train_images.reshape((-1,train_images.shape[1]*train_images.shape[1])) / 255.0 #X_train = tf.reshape(X_train,[-1,X_train.shape[1]*X_train.shape[2]]) Y_train = to_onehot(train_lables,10) X_test = test_images.reshape((-1,test_images.shape[1]*test_images.shape[1])) / 255.0 Y_test = to_onehot(test_lables,10) #双隐层的神经网络 input_nodes = 784 output_nodes = 10 layer1_nodes = 100 layer2_nodes = 50 batch_size = 100 learning_rate_base = 0.8 learning_rate_decay = 0.99 regularization_rate = 0.0000001 epochs = 50 mad = 0.99 learning_rate = 0.005 # def inference(input_tensor,avg_class,w1,b1,w2,b2): # if avg_class == None: # layer1 = tf.nn.relu(tf.matmul(input_tensor,w1)+b1) # return tf.nn.softmax(tf.matmul(layer1,w2) + b2) # else: # layer1 = tf.nn.relu(tf.matmul(input_tensor,avg_class.average(w1)) + avg_class.average(b1)) # return tf.matual(layer1,avg_class.average(w2)) + avg_class.average(b2) def train(mnist): X = tf.placeholder(tf.float32,[None,input_nodes],name = "input_x") Y = tf.placeholder(tf.float32,[None,output_nodes],name = "y_true") w1 = tf.Variable(tf.truncated_normal([input_nodes,layer1_nodes],stddev=0.1)) b1 = tf.Variable(tf.constant(0.1,shape=[layer1_nodes])) w2 = tf.Variable(tf.truncated_normal([layer1_nodes,layer2_nodes],stddev=0.1)) b2 = tf.Variable(tf.constant(0.1,shape=[layer2_nodes])) w3 = tf.Variable(tf.truncated_normal([layer2_nodes,output_nodes],stddev=0.1)) b3 = tf.Variable(tf.constant(0.1,shape=[output_nodes])) layer1 = tf.nn.relu(tf.matmul(X,w1)+b1) A2 = tf.nn.relu(tf.matmul(layer1,w2)+b2) A3 = tf.nn.relu(tf.matmul(A2,w3)+b3) y_hat = tf.nn.softmax(A3) # y_hat = inference(X,None,w1,b1,w2,b2) # global_step = tf.Variable(0,trainable=False) # variable_averages = tf.train.ExponentialMovingAverage(mad,global_step) # varible_average_op = variable_averages.apply(tf.trainable_variables()) #y = inference(x,variable_averages,w1,b1,w2,b2) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=A3,labels=Y)) regularizer = tf.contrib.layers.l2_regularizer(regularization_rate) regularization = regularizer(w1) + regularizer(w2) +regularizer(w3) loss = cross_entropy + regularization * regularization_rate # learning_rate = tf.train.exponential_decay(learning_rate_base,global_step,epchos,learning_rate_decay) # train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss,global_step=global_step) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # with tf.control_dependencies([train_step,varible_average_op]): # train_op = tf.no_op(name="train") correct_prediction = tf.equal(tf.argmax(y_hat,1),tf.argmax(Y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) total_loss = [] val_acc = [] total_train_acc = [] x_Xsis = [] with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(epochs): # x,y = next_batch(X_train,Y_train,batch_size) batchs = int(X_train.shape[0] / batch_size + 1) loss_e = 0. for j in range(batchs): batch_x = X_train[j*batch_size:min(X_train.shape[0],j*(batch_size+1)),:] batch_y = Y_train[j*batch_size:min(X_train.shape[0],j*(batch_size+1)),:] sess.run(train_step,feed_dict={X:batch_x,Y:batch_y}) loss_e += sess.run(loss,feed_dict={X:batch_x,Y:batch_y}) # train_step.run(feed_dict={X:x,Y:y}) validate_acc = sess.run(accuracy,feed_dict={X:X_test,Y:Y_test}) train_acc = sess.run(accuracy,feed_dict={X:X_train,Y:Y_train}) print("epoches: ",i,"val_acc: ",validate_acc,"train_acc",train_acc) total_loss.append(loss_e / batch_size) val_acc.append(validate_acc) total_train_acc.append(train_acc) x_Xsis.append(i) validate_acc = sess.run(accuracy,feed_dict={X:X_test,Y:Y_test}) print("val_acc: ",validate_acc) return (x_Xsis,total_loss,total_train_acc,val_acc) result = train((X_train,Y_train,X_test,Y_test)) def plot_acc(total_train_acc,val_acc,x): plt.figure() plt.plot(x,total_train_acc,'--',color = "red",label="train_acc") plt.plot(x,val_acc,color="green",label="val_acc") plt.xlabel("Epoches") plt.ylabel("acc") plt.legend() plt.show() ```
- [深度学习-实践]BP神经网络的Helloworld(手写体识别和Fashion_mnist) 1672020-06-29前言 原理部分请看这里 [深度学习-原理]BP神经网络 Tensorflow2 实现一个简单的识别衣服的例子 数据集Fashion_mnist, 此数据集包含10类型的衣服 (‘T-shirt/top’, ‘Trouser’, ‘Pullover’, ‘Dress’, ‘Coat’, ‘Sandal’, ‘Shirt’, ‘Sneaker’, ‘Bag’, ‘Ankle boot’) 训练数据是60000条,大小是28x28 测试数据是10000条, 大小是28x28 看看训练数据的前25张图片吧 impo
FashionMNIST数据集下载_course
2018-09-06此文件为百度云链接,通过百度云下载此文件为百度云链接, 相关下载链接://download.csdn.net/download/code_fighter/10650057?utm_source=bbs
29.44MB
fashion mnist 数据集(官网下载)
2019-01-12经典的MNIST数据集包含了大量的手写数字。十几年来,来自机器学习、机器视觉、人工智能、深度学习领域的研究员们把这个数据集作为衡量算法的基准之一。你会在很多的会议,期刊的论文中发现这个数据集的身影。实
29.44MB
Keras数据集-fashion-mnist
2019-04-21下载好的Keras的Fashion MINIST数据集,解压到%UserProfile%\.keras\目录下,也就是C:\Users\<user>\.keras\ 参考文章:https://blog
29.43MB
fashion-mnist.rar
2019-10-14MNIST是一个广泛使用的数据集,用于手写数字分类任务。由70,000个标记为28x28像素的手写数字的灰度图像组成。数据集被分成60,000个训练图像和10,000个测试图像。共有10个标签,分别表
29.45MB
Tensorflow官方数据集fashion-mnist
2018-09-30tensorflow官方数据集fashion-mnist,深度学习常用数据集,load_data()
29.43MB
MXNet fashion-mnist数据集
2019-01-15针对于MXNet框架 fashion-mnist数据集 mnist_train = gl.data.vision.FashionMNIST(root="fashion-mnist/",train=Tr
57.55MB
Fashion-MNIST.zip(包括raw和processed文件夹)
2019-10-10Fashion-MNIST.zip(包括raw和processed文件夹)
tensorflow在第一次运行Fashion MNIST会下载数据集,应该网络不好中断了报错不知咋办?_course
2020-02-09```**tensorflow在第一次运行Fashion MNIST会下载数据集,应该网络不好中断了报错不知咋办?** 代码如下: !/usr/bin/python _*_ coding: utf-8 -*- from __future__ import print_function import tensorflow as tf import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline import numpy as np import sklearn import pandas as pd import os import sys import time from tensorflow import keras print (tf.__version__) print (sys.version_info) for module in mpl ,np, pd, sklearn, tf, keras: print (module.__name__,module.__version__) fashion_mnist = keras.datasets.fashion_mnist (x_train_all,y_train_all),(x_test,y_test) = fashion_mnist.load_data() x_valid,x_train = x_train_all[:5000],x_train_all[5000:] y_valid,y_train = y_train_all[:5000],y_train_all[5000:] print (x_valid.shape, y_valid.shape) print (x_train.shape, y_train.shape) print (x_test.shape, y_test.shape) ``` ``` 报错如下: 2.1.0 sys.version_info(major=2, minor=7, micro=12, releaselevel='final', serial=0) matplotlib 2.2.5 numpy 1.16.6 pandas 0.24.2 sklearn 0.20.4 tensorflow 2.1.0 tensorflow_core.python.keras.api._v2.keras 2.2.4-tf Traceback (most recent call last): File "/home/join/test_demo/test2.py", line 26, in <module> (x_train_all,y_train_all),(x_test,y_test) = fashion_mnist.load_data() File "/usr/local/lib/python2.7/dist-packages/tensorflow_core/python/keras/data sets/fashion_mnist.py", line 59, in load_data imgpath.read(), np.uint8, offset=16).reshape(len(y_train), 28, 28) File "/usr/lib/python2.7/gzip.py", line 261, in read self._read(readsize) File "/usr/lib/python2.7/gzip.py", line 315, in _read self._read_eof() File "/usr/lib/python2.7/gzip.py", line 354, in _read_eof hex(self.crc))) IOError: CRC check failed 0xa445bb78 != 0xe7f80d 3fL ``` ```
-
下载
FANUC机器人JOG相关警告代码含义.docx
FANUC机器人JOG相关警告代码含义.docx
-
下载
zfmodel.slx
zfmodel.slx
-
博客
docker搭建单机elasticsearch
docker搭建单机elasticsearch
-
学院
PHP支付宝微信支付配置教程
PHP支付宝微信支付配置教程
-
下载
切耳法(earcut)js文件
切耳法(earcut)js文件
-
下载
芯片制造技术之蚀刻系统讲解
芯片制造技术之蚀刻系统讲解
-
下载
java项目实战-机战游戏.docx
java项目实战-机战游戏.docx
-
下载
Delphi10.4.1下的Web开发组件IntraWeb15.2.8
Delphi10.4.1下的Web开发组件IntraWeb15.2.8
-
学院
【数据分析-随到随学】Mysql数据库
【数据分析-随到随学】Mysql数据库
-
学院
Qt项目实战之基于Redis的网络聊天室
Qt项目实战之基于Redis的网络聊天室
-
学院
thinkphp5.1博客后台实战视频
thinkphp5.1博客后台实战视频
-
学院
ProBuilder快速原型开发技术
ProBuilder快速原型开发技术
-
博客
为何我要吹爆巨人?
为何我要吹爆巨人?
-
下载
SocialV.rar
SocialV.rar
-
下载
beijing.json
beijing.json
-
下载
F2823x_RevA_CSP-硬件开发工具类资源
F2823x_RevA_CSP-硬件开发工具类资源
-
博客
单片机
单片机
-
下载
dnSpy6.1.8-net48-win64.zip
dnSpy6.1.8-net48-win64.zip
-
博客
mac zsh: command not found: vim
mac zsh: command not found: vim
-
博客
没有基础怎么学云计算 云计算中运用哪些技术
没有基础怎么学云计算 云计算中运用哪些技术
-
博客
响应数据和结果视图
响应数据和结果视图
-
博客
Boolan CEO 李建忠致辞2020全球产品经理大会:产品改变世界
Boolan CEO 李建忠致辞2020全球产品经理大会:产品改变世界
-
学院
电商设计专业思维
电商设计专业思维
-
博客
mac版Sublime Text3快捷键大全
mac版Sublime Text3快捷键大全
-
学院
UnitySocket异步聊天室
UnitySocket异步聊天室
-
学院
Scratch编程等级考试二级真题讲解(电子学会图形化编程)
Scratch编程等级考试二级真题讲解(电子学会图形化编程)
-
下载
eclipse_fx.zip
eclipse_fx.zip
-
博客
学习JS数据结构
学习JS数据结构
-
下载
SharpOD_x64_v0.6c_beta.zip
SharpOD_x64_v0.6c_beta.zip
-
下载
PID调整心法口诀.txt
PID调整心法口诀.txt